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Introduction

The evolution of the financial environ-
ment since 1970 has come with a very 
high price. Without clear warnings, at 
least eight major crises have struck the 
financial sector. The subprime crisis, 
which originated in the United States 
in 2007, can be considered one of the 
worst financial disasters. For the first 
time, problems that originated in one 
country had global effects leading the 
world’ economy to a serious reces-
sion. However, it is in these critical 
times that beliefs are revaluated and 
new paradigms emerge to guarantee 
that next time crises come at a dis-
counted value. 

Indeed, one of the mayor lessons 
of the subprime crisis has been that 
current financial models are not based 
on adequate assumptions. Evidently, 
Neoclassical theory, today’s mains-
tream financial paradigm, has become 
obsolete for explaining the complexi-
ty of financial markets. It oversimpli-
fies reality, and thus, can only address 
problems under ideal or normal con-
ditions. For this reason, it is necessary 
to look for alternative theories that 
allow the description of the real mar-
ket dynamics, and provide accurate 
tools to measure the apparent disorder 
of today’s capital markets. 

Consequently, this article propo-
ses the application of Chaos Theory 
and the Science of Fractals to finance. 

Within this new framework, it would 
be possible to find a more general, but 
coherent perspective to study finan-
cial phenomena. Mainly, it focuses on 
the fractal structure of capital markets 
to be able to develop new analytical 
and mathematical tools. This would 
allow financial analysts to understand 
better financial behavior. 

I. The Development of 
Chaos Theory and the 
Science of Fractals in 
Science

Chaos Theory was developed in phy-
sics with the study of complex systems 
and fractal structures in nature. Howe-
ver, before this theory consolidated as 
a main paradigm in science, many pre-
conceived ideas had to be changed. In 
particular, Newton’s ideas of the uni-
verse and nature, which were deeply 
rooted in the discourse and method 
of scientists for more than a hundred 
years. The most significant changes 
came in the nineteenth century with 
the science of heat and quantum me-
chanics. Nevertheless, even Darwin’s 
evolution theory and Einstein’s relati-
vism help to set ground for the emer-
gence of a new synthesis in science. 
The result of this evolution was Chaos 
Theory. This new paradigm proposes 
a new language and tools to address 
our complex world. 
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A. From Newton’s Time to the 
Quantum World

From the seventeenth century to the 
nineteenth century, Newton’s inte-
llectual contributions influenced the 
scientific discourse and method. In 
1687, Newton published his book 
Philosophiæ Naturalis Principia Ma-
thematica, which included the laws 
of motion1 and the universal force of 
gravitation2. With this book he explai-
ned the mechanics of world with laws 
that were “independent in time”, in 
the sense that past and future play the 
same role, and universally determinis-
tic3. Newton’s idea of the universe is, 
therefore, represented as a clockwork 
machine where everything can be pre-

dicted in advance, or looked upon in 
retrospect. 

This mechanical interpretation 
of the universe is observed in both 
Newton’s discourse and approach to 
science. As the inventor of the cal-
culus, Newton was able to simplify 
natural phenomena into linear equa-
tions and other predictable formulas. 
Even more, his theorems followed a 
mathematical logical system similar 
to the method of Euclidean geome-
try4, where few elegant simple premi-
ses, combined with a deductive logic, 
revealed the “truth” of the universe. 
Thus, Newtonian laws are characteri-
zed by their mathematical formalism 
and methodological reductionism. 

1 The law of motion comprises three main postulates: 1) every object is at a state of rest un-
less some external force acts upon it changing its uniform motion; 2) the object will move in the 
same direction and proportional to the force applied [Force = Mass * Acceleration]; and 3) every 
action has an equal and opposite reaction.  Thus if the body 1 exerts on body 2 a Force A, then 
body 2 exerts on body 1 a Force B, resulting in F (A) = F (B).
2 The law of gravitation is a special case of the second postulate. This law states that there 
is an attraction between all bodies with mass, which is directly proportional to the quantity of 
matter that they contain, and inversely proportional to the square of the distance between them.
3 In Newtonian physics, the world is deterministic, meaning that every state in the world is 
the result of a preceding occurrence.
4 Euclidean Geometry is a mathematical system named after the Greek mathematician Euclid 
of Alexandria. In his famous book Elements, Euclid organized and summarized the geometry of 
ancient Greece based on lines, planes and spheres. In his discussion about geometry, thus, he de-
scribes the smoothness and symmetry of nature in idealized or Platonic terms. However, Euclid’s 
great contribution was his use of a deductive system for the presentation of mathematics. As so, 
he explained a series of theorems all derived from a small number of axioms. Although Euclid’s 
system no longer satisfies modern requirements of logical rigor, its importance in influencing 
the direction and method of the development of mathematics is undeniable. Indeed, Euclidean 
Geometry remained unchallenged until the middle or late nineteenth century.
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For more than a century, Newton’s 
propositions were considered the ulti-
mate science and its mathematics the 
ultimate expression of reality. Howe-
ver, discoveries in the cosmic and na-
tural world showed that the universe 
was in fact govern by more complex 
processes than those observed by 
Newtonian mechanics. This led scien-
tists to question existing ideas, and to 
embrace a more organic view of natu-
re, less orderly and less predictable. 

The first rupture was made with 
the Second Law of Thermodynamics5. 
In 1824, Sadi Carnot published the 
first statement of what later developed 
into this law. Carnot argued that heat 
could not spontaneously flow from 
cold objects to hot ones. More specifi-
cally, heat could flow from a higher to 
a lower temperature, but never in re-
verse direction, except with the action 
of an external force. As opposed to 
Newtonian mechanics, this demons-
trated that some processes are simply 
irreversible in time. Indeed, “if the-

re were no second law, the universe 
would be like a giant clock that never 
run down” (Lightman, 2000, 63). 

The second rupture came from 
the development of quantum mecha-
nics6. The main contribution of this 
field is that it changed the determi-
nistic Newtonian perspective and 
gave science a natural uncertainty that 
could only be described by states of 
probability. For instance, the German 
physicist Heisenberg proposed the un-
certainty principle as he discovered 
that is not possible to determine an 
exact position and moment of an ob-
ject simultaneously. More generally, 
this principle argues that it is unlikely 
to know with precision the values of 
all the properties of a system at the 
same time. In this way, the properties 
that are not possible to be described 
can only be inferred by probabilities. 
At last, even in exact sciences such as 
mathematics there is not total certain-
ty7. 

5 Thermodynamics is a branch of physics that deals with the various phenomena of energy 
and related properties of matter, especially the laws of transformation of heat from one form to 
another. The basis of this science is experimental observation.   
6 The term quantum comes from Max Planck’s suggestion in 1900 that radiant energy was 
emitted from a heated body in discontinuous portions that he termed quanta. Afterwards, the 
term quantum mechanics was generalized to define a branch of physics that studies the physical 
reality at the atomic level of matter.
7 Kurt Gödel will complement this idea with his incompleteness theorem. In 1931, Gödel 
demonstrated that there were limits in mathematics, because there are problems that do not have 
an established solution. In other words, for a given group of postulates there is always going to 
be one of them whose validity can neither be proven nor disproven.
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Moreover, Niels Bohr, Danish phy-
sicist, developed the concept of com-
plementary, which states that subato-
mic particles have simultaneous wave 
and particle properties. However, be-
cause it is not possible to observe both 
states at the same time, it is the obser-
ver who determines the properties of 
an object. This implies that measuring 
instruments affect the behavior of ato-
mic objects and the conditions under 
which certain phenomena appear. In 
1927 Niels Bohr wrote: “Anyone who 
is not shocked by quantum theory 
does not understand it” (Rosenblum 
and Kuttner, 2006, 52). 

Evidently, quantum mechanics 
contradicts the Newtonian clockwork 
machine notion. With this “new 
science”8, “the universe begins to look 
more like a great thought than a great 
machine” (Rosenblum and Kuttner, 
2006, 51). Nevertheless, accepting 
quantum theory means confronting a 
big enigma as it postulates ultimate 
randomness in nature.

Chaos Theory is the final ruptu-
re with Newtonian mechanics. This 
theory studies systems that appear to 
follow a random behavior, but indeed 
are part of a deterministic process. 
Its random nature is given by their 
characteristic sensitivity to initial 
conditions that drives the system to 
unpredictable dynamics. However, in 
a chaotic system, this non-linear be-
havior is always limited by a higher 
deterministic structure. For this rea-
son, there is always an underlying or-
der in the apparent random dynamics. 
In Sardar and Abrams (2005) words: 
“In Chaos there is order, and in order 
there lies chaos” (Sardar and Abrams, 
2005, 18). 

B. Chaos Theory

Kellert (1993) defines chaos theory as 
“the qualitative study of unstable ape-
riodic9 behavior in deterministic non-
linear10 dynamical systems” (in Mc 
Bride, 2005, 235). Chaotic systems are 

8 The “new” science is a general term for all the theories and ideas generated in different 
academic disciplines that do not correspond to the “classical” scientific explanation.  Quantum 
mechanics is part of this approach to science, with other disciplines and theories, which leave 
behind the idea of the Newtonian world to model our complex reality
9 An aperiodic system is the one that does not experience a completely regular repetition of 
values. However the variables associated with the system are limited by a fixed and definable 
space.
10 The meaning of the concept of nonlinearity is that the whole is greater that or less than 
the sum of its parts. By contrast in a linear world, the effects are always proportional to their 
causes.
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said to be mathematically determinis-
tic because if the initial measurements 
were certain it would be possible to 
derive the end point of their trajec-
tories. Nevertheless, chaotic systems 
have two important characteristics: 1) 
they are highly sensitive to changes in 
the initial conditions; and 2) they in-
volve nonlinear feedback forces11 that 
can produce unexpected results.

The investigation on this field can 
be trace to the early 1900’s when the 
physicist Henri Poincare observed that 
a very small difference in the starting 
positions and velocities of the planets 
could actually grow to an enormous 
effect in the later motion. This was a 
proof that uncertainty would remain 
huge in certain systems, even though 
initial measurements could be speci-
fied with high precision. Poincare’s 
discovery was neglected for many 
decades as it clearly contradicted the 
mechanistic Newtonian perspective. 

However, in the early 1960’s a 
small part of the scientific commu-
nity became simple dissatisfied with 
existing paradigms. They often igno-
red important aspects to uphold linear 
equations and a reductionist method. 
It became then apparent that Newto-
nian mechanics had serious limita-
tions in explaining the complexity 
of the universe. Therefore, scientists 

started looking for new explanations 
and new approaches that were more 
coherent with the organic nature of the 
world. The advent of computers faci-
litated this task, and thus the scientific 
community progressively turned to 
the study of non-linear dynamics, pat-
terns and other complex behavior that 
were excluded in classical science. 

A significant progress in the emer-
gence of the “new science” came with 
Edward Lorenz’s proposition of the 
Butterfly Effect in 1963. In his meteo-
rological investigations, Lorenz found 
that variations in the decimals of ini-
tial measurements of the weather pre-
dicted a completely different motion. 
To illustrate better his theory, Lorenz 
gave the example of how a butterfly 
that flags its wings in Brazil can cau-
se a tornado in Texas, indicating that 
a small wind could change the wea-
ther in few weeks. This is known as 
the Butterfly Effect, the “signature” of 
chaos theory, and it makes the point 
that some systems are highly sensitive 
to insignificant changes in the starting 
conditions. 

Gradually, physicists discovered 
that most natural systems are charac-
terized by local randomness as well as 
global determinism. These two states 
can coexist, because randomness in-
duces the local innovation and varie-

11 Feedback is present in a system when the inputs affect the outcome, and at the same time, 
the outcome will influence the inputs.
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ty, but determinism gives the global 
structure. Therefore, a random sys-
tem behaves always within certain 
bounds. 

Overall, the objective of Chaos 
Theory is to study changing environ-
ments, full of nonlinear dynamics, 
discontinuities, feedback systems and 
intelligible, but not predictable, pat-
terns. This influenced deeply the dis-
course of science, allowing it to move 
upwards to a better understanding of 
the physical world. Most important, 
it triggered a significant change in its 
methodology. According to Mirowski 
(2004): 

“The breakthrough came when physicists 
stopped looking for deterministic invariants 
and began looking at geometric patterns in 

phase space. What they found was a wholly 
different kind of order amid the chaos, the 
phenomenon of self-similarity at different 
geometric scales. This suggested that many 
phase-space portraits of dynamical systems 
exhibited fractal geometry; and this in turn 
was taken as an indication that a wholly diffe-
rent approach must be taken to describing the 
evolution of mechanical systems” (Miroswki, 
2004, 243)

Chaos Theory, therefore, sug-
gests the Science of Fractals as the 
framework where new tools can be 
found and new ways of solving pro-
blems can be explored. In this way, as 
Euclidean Geometry served as a des-
criptive language for the Newtonian 
mechanics of motion, fractal geome-
try is being used for the patterns pro-
duced by chaos. 

Figure 1.1 The Sierpinski triangle is a fractal generated by connecting the midpoints of a usual triangle to 
form four separate triangles (the one in the center is later cut). This process is repeated infinite times until 
the final figure is observed.

12 The term “fractal” was coined by Benoit Mandelbrot and was derived from the Latin word 
fractus, which means “broken” or “fractured”.

C. The Science of Fractals

Benoit Mandelbrot developed the 
field of fractal geometry between 
1970 and 1980 with books such as 

Fractals: Forms, Chance and Dimen-
sions (1977) and Fractal Geometry of 
Nature (1982). A fractal12 is a shape 
made of parts similar to the whole in 
some way, thus they look (approxi-
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mately) the same whatever scale they 
are observed. When fractals scale up 
or down by the same amount, they are 
said to be self-similar. In the contrary, 
if they scale more in one direction than 
another, they are called self–affine. 
And in their most complex form, they 
are named multifractals, which sca-
le in many different dimensions and 
ways. This diversity of fractals allows 
them to be found in nature, the human 
body, and art, between others. 

The concept of fractals is inextri-
cably connected to the notion of fractal 
dimension13. In Euclidean mathema-
tics a point had one dimension, a line 
two and a cube three. With Einstein, 
and his Relativity theory, the physics 
world added time as the fourth dimen-
sion. However in fractal science, the 
dimension depends on the point of 
view of the observer. “The same ob-
ject can have more than one dimen-
sion, depending on how you measu-
re it and what you can do with it. A 
dimension needs not to be a whole 
number; it can be fractional. Now and 
ancient concept, dimension, becomes 
thoroughly modern” (Mandelbrot, 
2004, 129). The fractal dimension is 
important because it recognizes that 
a process can be somewhere between 
deterministic or random. 

In spite of this, fractal geometry 
is in fact a simplifying and logical 
tool. In mathematics, fractal functions 
work like chaotic systems where ran-
dom changes in the starting values 
can modify the value of the function 
in unpredictable ways within the sys-
tem boundaries. The famous Mandel-
brot set demonstrates this connection 
between fractals and chaos theory, as 
from a very simple mathematical fee-
dback equation, highly complex re-
sults are produced (see Figure 1.2). 

Figure 1.2: Mandelbrot Set. The Mandelbrot 
set embodies the principle of the transition 
from order to chaos. This fractal figure is the 
result of the process zn+1= znˆ2 + c with di-
fferent values of the constant c.

The key to understand fractals is then 
to discern those fundamental proper-
ties that do not change from one object 

13 The fractal dimension gives a qualitative measure of the degree of roughness, brokenness 
or irregularity of a fractal.
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under study to another14. Accordingly, 
“fractal geometry is about spotting re-
peating patterns, analyze them, quan-
tify them and manipulate them, it is 
a tool of both analysis and synthesis” 
(Mandelbrot, 2004, 126). Given these 
special features, Fractal Geometry has 
extended to areas such as hydrology, 
meteorology and geology, and even to 
economics and finance. 

II. Chaos Theory and the 
Science of Fractals in 
Finance 

Historically, it has been observed that 
the ideas that predominate in science 
influence the economic paradigms 
of the same period of time. Thus, the 
legacy of Newtonian mechanics is 
observed in the economic and finan-
cial ideas of the nineteenth century, 
in particular Neoclassical Theory. 
However, even though scientific ideas 
have evolved, mainstream financial 
theory is still connected to the classi-
cal logic of the world. For this reason, 
financial models are based on rigid 
assumptions, mathematical formalism 
and methodological reductionism. It 

is necessary, therefore, to explore a 
more coherent approach to finance 
that includes the perspective of con-
temporary science, Chaos Theory and 
the Science of Fractals. 

A. Neoclassical Theory 

The theoretical background of 
Neoclassical Theory is found in the 
classical postulates of Adam Smith 
(the invisible hand) and the school of 
Utilitarianism15. However, it was pro-
perly developed in 1870 by Carl Men-
ger, William Stanley Jevons and Leon 
Walras. Later, the economist Alfred 
Marshall will codify neoclassical eco-
nomic thought in his book “Principles 
of Economics” published in 1890. 

Although Neoclassical Theory 
has become an “umbrella” for other 
economic postulates, it shares the fo-
llowing core assumptions: 
• People have rational and homoge-

neous preferences, thus they will 
always choose the outcome with 
the highest value; 

• Individuals act as rational agents 
by maximizing their utility at any 
given point in time; 

14 In Mandelbrot’s words, “the key is to spot the regularity inside the irregular, the pattern in 
the formless” (Mandelbrot, 2004, 125).
15 Utilitarianism is an economic theory that explains the value of a product in terms of the 
different utility functions of consumers. Neoclassicals were influenced by their idea that utility 
can be measured, and because of this, market participants can act as rational individuals.
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• Agents will act independently ba-
sed on the relevant available infor-
mation. 
Neoclassical models further assu-

me perfect competition in the market, 
no information asymmetry and no 
transaction costs. 

Neoclassical Theory postulates 
that perfectly informed rational indi-
viduals, who just differ with respect 
to their utility functions, act as self-
interested agents trying to optimize 
their resources. The market, as a re-
sult, will try to reconcile these con-
flicting desires until it reaches a state 
of equilibrium. In this point, known as 
Pareto optimum, any change will im-
ply the destabilization of the system. 
For this reason, this school of thought 
concludes that markets will allocate 
scarce resources efficiently via the in-
teraction of demand and supply. 

Based on this idea of market beha-
vior, Neoclassical theory built a struc-
ture to understand the functioning of 
all the markets in the economy, inclu-
ding financial markets. Consequently, 
from this neoclassical perspective, fi-
nancial theories of competitive equi-
librium, such as the Efficient Market 

Hypothesis and Random Walk Theory, 
will be developed. 

1. The Efficient Market 
Hypothesis and the Random 
Walk Theory

The research on financial markets 
can be traced to the pioneer work of 
Louis Bachelier. In his Ph.D disser-
tation titled “The Theory of Specula-
tion” (1900), Bachelier offered the 
first statistical method for analyzing 
the random behavior of stocks, bonds, 
and options. The main insight of his 
investigation was that in a fair mar-
ket16, price changes in either direction 
or a given amount have the same like-
lihood of occurrence. Consequently, 
the mathematical expectation of any 
speculator is zero17. “Under these con-
ditions, one may allow that the proba-
bility of a spread greater than the true 
price is independent of the arithmetic 
amount of the price and that the curve 
of probabilities is symmetrical about 
the true price” (Bachelier 1900 p 28). 

In spite of Bachelier’s remarkable 
contribution, the interest in the analy-
sis of the market from this point of 

16 As it is observed, Bachelier assumes a fair market where influences that determine fluctua-
tions are reflected in prices.
17 This idea implies that if an initial investment equals to $100, it would be equally probably 
that at the end of the period the value moves to $100 + k or $ 100 – k. In other words, the prob-
ability of a gain is equal to the probability of loss, and hence the expected value in any future 
time remains $100 and the expected gain equals to 0.
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view developed very slowly. Just with 
the unprecedented crash of the stock 
market of 1929, academics began 
paying attention to his propositions. 
Afterwards, the study of random mar-
kets was mainly conducted to prove 
that the investment world was highly 
competitive, and hence prices reflec-
ted the best information about the fu-
ture. Nonetheless, researchers did not 
go beyond this basic intuition and mo-
del the economics involved. To a large 
extent, the empirical work in this area 
preceded the development of a proper 
economic discourse. 

In 1970 Eugene Fama developed 
the theoretical framework for ran-
dom markets known as the Efficient 
Market Hypothesis (emh). This theory 
states that a market is efficient in the 
determination of a “fair” price when 
all available information18 is instantly 
processed as soon as it reaches the 

market, and is immediately reflected 
in the value of traded assets. Fama sta-
ted that for a market to be efficient, it 
must satisfy the following conditions: 
“1) there are no transaction costs in 
trading securities; 2) all available in-
formation is costessly available to all 
market participants; 3) all agree in the 
implications of current information for 
the current price and distributions of 
each security” (Fama, 1970, 387)19. 

In such frictionless world, inves-
tors earn a competitive expected return 
in the market, as all the cost and bene-
fits associated with a value are already 
incorporated in the price. According 
to Fama, the competition between so-
phisticated investors allows the stock 
market to consistently price stocks in 
accordance with the best expectations 
of the future economic prospects (in 
Glen, 2005, 92-93). Thus, if the price 
deviates from its fundamental value, 

18 Fama distinguished three forms of market efficiency. The weak form, which stipulates that 
current asset prices already incorporate past price and volume information. This means that in-
vestors cannot use historical data to predict future prices. For this reason technical analysis are 
not useful to produce excess returns and thus some fundamental analysis is required. The semi-
strong form that argues that all the publicly available information is instantly reflected in a new 
price of the assets. In this case, not even fundamental analysis will be helpful to produce excess 
returns. And finally the strong form, which assumes that prices reflect all available information. 
Hence prices not only take into account historical and public information, but also private infor-
mation. However, generally the term “all available information” represents the idea that prices 
reflect all publicly available information.
19 In this point it is important to highlight that Fama does acknowledge that frictionless mar-
kets are not met in practice. Therefore, these conditions are sufficient but not necessary. As long 
as in general prices fully reflect information, there is a “sufficient number” of investors that have 
immediate access to information, and disagreement among investors do not imply an inefficient 
market, then the emh can still reflect rational market behavior.
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market participants will correct it. At 
the end, prices will be in a competiti-
ve equilibrium with respect to infor-
mation. 

The Random Walk Hypothesis is 
an extension of the emh. It states that 
random information is the only cau-
se for changes in prices. Therefore, in 
the absence of new information there 
is no reason to expect any movement 
in the price, and the best possible fo-
recast of the price of tomorrow will 
be, then, the price of today. As a re-
sult, the probability that changes oc-
cur can be as well determined by a 
chance game such as tossing a coin 
to obtain head or tails. This implies 
that the next move of the speculative 
price is independent of all past moves 
or events20 or, as in mathematics, they 
form a sequence of identically and in-

dependently distributed (i.i.d) random 
variables. 

As mentioned before, this was al-
ready formulated in Bachelier’s at-
tempt to mathematically explain a ran-
dom walk in security prices. Fifty years 
later, Osborne expanded Bachelier’s 
ideas and developed in 1959 the Ba-
chelier-Osborne model. This model 
takes the idea of independence, and 
further assumes that “transactions are 
fairly uniformly spread across time, 
and that the distribution of price chan-
ges from transaction to transaction has 
finite variance” (Fama, 1965, 41). If 
the number of transactions is large, the 
distribution of i.i.d random variables 
will conform to the normal or Gaus-
sian21 distribution due to the Central 
Limit Theorem22. The normal distribu-
tion has the following desirable proper-

20 In statistics, independence means that “the probability distribution for the price changes 
during time period t is independent of the sequence of price changes during previous time peri-
ods. That is, knowledge of the sequence of price changes leading up to time period t is of no help 
in assessing the probability distribution for the price change during time period t ”(Fama, 1965, 
35). Nevertheless, perfectly independence can not be found in stock markets, thus to account for 
independence is just necessary that past history of the series would not allow prediction of the 
future in a way which makes expected profits greater than they would be under a buy-and-hold 
model. Fama in his discussion of independence concludes: “the stock market may conform to the 
independence assumption of the random walk model even though the process generating noise 
and new information are themselves dependent.” (Fama, 1965, 39).
21 The normal distribution is also referred as Gaussian, because it was Karl F. Gauss (1977-
1955) the one who introduced it when studying the motion of celestial bodies. (Jorion, 2007, 84)
22  “If price changes from transactions to transaction are independent identically distributed 
random variables with finite variance and if transactions are fairly uniformly spaced through 
time, the Central Limit theorem lead us to believe that price changes across differencing intervals 
such as a day week or month, will be normally distributed since they are the simple sum of the 
changes from transaction to transaction” (Fama, 1963, 297).
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ties. First, the entire distribution can be 
characterized by its first two moments: 
the mean, which represents the loca-
tion, and the variance, the dispersion. 
Second, “the sum of jointly normal 
random variables is itself normally dis-
tributed” (Jorion, 2007, 85).

Within this framework, a random 
walk is represented statistically by a 
Brownian Motion23. A Brownian mo-
vement can be defined as a stochastic 
process24 that shares three basic pro-
perties: homogeneity in time, inde-
pendence of increments and continui-
ty of paths. Specifically, a Brownian 
motion is a process such that: 1) there 
is statistical stationarity, meaning that 
the process generating price changes 
stays the same over time25. Thus, if Xt 
denotes the process at t>0, the process 
Xt0 + t - Xt0 has the same joint distri-
butions functions for all t>0; 2) the 
increments of the process for distinct 
time intervals are mutually indepen-
dent; and 3) the process declines in a 
continuous frequency, implying that 

most price changes are small and ex-
tremely few are large, and they change 
in a continuous manner. This excludes 
processes with sudden jumps, for ins-
tance. Therefore, this model assumes 
that small movements from t0 to t can 
be described as: 

Xt - Xt0 ≈	
e
	
∗ |t - t0|

H

where e is a standard normal random 
variable and H = 0.5. In short, in a 
Brownian Motion, to be able to find 
Xt, a random number e (chosen from 
a Gaussian distribution) is multiplied 
by the increment |t - t0|

H, and the result 
is added to the given position Xt0. 

2. Inconsistencies and Failures 
of Neoclassical Theory

While studying the performance of 
market prices, researchers have dis-
covered certain market behaviors that 
contradict Neoclassical Theory. The-
re is evidence for season anomalies26, 

23 The term “Brownian Motion” comes from the area of physics used to describe the irregular 
movement of pollen suspended in water, a phenomenon studied by the British physicist Robert 
Brown in 1928. Again, Bachelier was the first one to suggest that this process could also describe 
the price variations of financial series.
24 A stochastic process is determined by a deterministic component and a random variable, 
which can be only assessed by probability distributions.
25 For instance, tacking again the game of the coin-toss, statistical stationarity means that the 
coin itself does not change.
26 Researchers have found correlation of asset returns with market-book ratios, the firm 
size or even with the different seasons of the year. For more information refer to Fama (1965), 
Guimaraes, Kingsman and Taylor (1989), Lo (1997), and Lo and MacKinlay (1999).
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for overreaction of investors, for an 
increase of correlation and excess vo-
latility in certain periods of time, and 
for many other situations, which de-
monstrate that prices are not in their 
equilibrium values, investors do not 
act as rational individuals, and mar-
kets do not follow a random walk. 
This does not imply that there is so-
mething “abnormal” with the behavior 
of the financial market, but just that 
neoclassical postulates fail to describe 
the actual behavior of financial mar-
kets. As Lo (1997) explains: “What 
are we to make of these anomalies? 
Their persistence in the face of public 
scrutiny seems to be a clear violation 
of the EMH. After all, most of these 
anomalies can be exploited by relati-
vely simple trading strategies.” (Lo, 
1997, xvi). 

Several authors, such as Mirows-
ki (1990, 2002, 2004), Hsieh and 
Ye (1998), Chorafas (1994), Peters 
(1994), Foster (2005), and Faggini 
and Lux (2009) among others, have 
highlighted that the discrepancy of 
economic and financial theory with 
reality rests in the fact that Neoclassi-
cal Theory resembles Newtonian phy-

sics. For instance, when Neoclassical 
Theory hypothesizes that the sum of 
rational individuals conduces the eco-
nomy to an optimum equilibrium, it 
is possible to distinguish the Newto-
nian idea of modeling a linear system 
that exhibits a stable and well-defined 
“equilibrium”. 

Newtonian rigid determinism and 
timeless dynamics are also present 
in Neoclassical Theory (Mirowski 
2004). In the Neoclassical realm, 
markets behave like a mechanical 
perfect roulette wheel, where no 
opportunities of arbitrage27 are per-
mitted. This mechanistic perspecti-
ve allows the description of market’ 
behavior with equations that can 
connect numerical measurements at 
a given time to their past and futu-
re values. Indeed, when statisticians 
hypothesized in the Random Walk 
Hypothesis that the course of a stock 
price follows a stochastic process 
such as a Brownian motion, they 
do not imply that prices cannot be 
forecasted28. In the contrary, “they 
merely imply that one cannot fore-
cast the future based on past alone” 
(Cootner, 1964b, 80). For that reason, 

27 Arbitrage refers to the possibility of profiting by exploiting price differences in the market 
without incurring in additional risk. In an efficient market, the competence between investors 
would not allow this possibility, therefore, it is said to be an arbitrage-free market.
28 “This is observed in Fama’s work, who concluded in his 1965 research that: “it seems safe 
to say that this paper has presented strong and voluminous evidence in the random walk hypoth-
esis”, and then, introduced a paper with the sentence, ‘there is much evidence that stock returns 
are predictable’” (in Jorion and Khoury, 1996, 326).
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after the random variable, commonly 
referred as white noise, has been “se-
parated out”, deterministic equations 
can actually describe price changes. 
As Mirowski said: “These stochastic 
“shocks” had little or no theoretical 
justification, but themselves seemed 
only an excuse to maintain the pure 
deterministic ideal of explanation in 
the face of massive disconfirming 
evidence” (Mirowski, 2004, 231). 

Besides Newton’s concepts, clas-
sical mathematics, which involve 
linear systems with smooth and con-
tinuous changes, and symmetric dis-
tributions, are part of Neoclassical 
Theory29. In fact, the importance of 
this type of mathematical language is 
clearly reflected in the development 
of the theory. As it was mentioned be-
fore, the emh was created to explain 
the random character of markets. In 
particular, it justified the use of statis-
tical tools that required independence 
and Gaussian distributions. As Peters 
(1994) said: “the emh, developed to 
make the mathematical environment 
easier, was truly a scientific case 

of putting the cart before the horse” 
(Peters, 1994, 41). Accordingly, the 
Newtonian mathematical idiom and 
reductionist methodology became es-
sential for the Neoclassical approach 
to economics and finance30. 

Consequently, since the begin-
ning, Neoclassical theorists refused to 
explain phenomena that contradicted 
their assumptions or could not fit in 
their mathematical equations (Hsieh 
and Ye, 1998). Therefore, large chan-
ges in prices or irrational behavior 
of individuals were just seen as been 
anomalous. Furthermore, it distan-
ced them from the actual information 
revealed by real data (Mandelbrot, 
2004). As a result, neoclassical doctri-
nes are not grounded to empirical ob-
servation or even reasonable assump-
tions. As Mandelbrot (2004) observes: 
“the fact that mass psychology alone, 
might have been sufficient evidence 
to suggest there is something amiss 
with the standard financial models” 
(Mandelbrot, 2004, 170). 

Overall, the failure of Neoclas-
sical Theory is its chosen mode of 

29 Just recall that a Brownian Motion describes the path of a stock in small independent 
changes that are distributed with the normal symmetric bell-shape curve.
30 This is argued by Chorafas (1994) and Foster (2005). Citing Foster (2005): “Why should 
eminently reasonable propositions concerning the existence of time irreversibility, structural 
change and true uncertainty in historical processes have been so unpalatable to the mainstream of 
the economics profession? Because of the chosen language of scientific discourse, namely math-
ematics. A scientific desire to use mathematics as formal medium for deduction. The problem 
does not lie in the chosen economics but, rather in its limited expression, in the chosen language 
of discourse”. (Foster, 2005, 371)
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discourse and set of tools. It took the 
ideas of the mid-19th century prior to 
the Second Law of thermodynamics, 
and remained mired in its original 
orientation even though the economic 
and financial world has changed enor-
mously (Mirowski, 2002 and 2004). 
Therefore, to capture the complexity 
of the global economy and financial 
markets, it is necessary to renew our 
financial theories with the perspective 
of Chaos Theory and the Science of 
Fractals. 

B. Chaos Theory and the 
Science of Fractals in Finance

Both in physics and finance, the 
objective of Chaos Theory and the 
Science of Fractals is to study the 
aperiodic non-linear behaviour emer-
ging from systems sensitive to the 
initial conditions that are part of a 
deterministic structure. Accordingly, 
the disordered behavior is a local 
property of the system, but there are 
in fact some distinguishable patterns 
of market behaviour. This is the main 
insight that this new paradigm gives 
to finance. It describes markets as ha-
ving local randomness and global de-
terminism, just as in fractal structures 
on nature. 

A shift from an “efficient” mar-
ket to a “fractal” market has certain 

implications. Financial systems that 
combine local randomness as well as 
global determinism cannot be explai-
ned by a random walk or normal dis-
tributions. Therefore in order to study 
these systems, it is necessary to find 
a new statistical description of capi-
tal markets. This will signify a chan-
ge from Gaussian statistics to Fractal 
statistics. 

a) A Fractal Financial Market

Benoit Mandelbrot, father of fractal 
geometry, approached the market as 
a scientist, not a deductive mathema-
tician, and in doing so, he was able 
to discover the self-similar property 
of financial markets. Indeed, he first 
discovered fractals in financial time 
series, when observing that the same 
kind of distributions appeared unchan-
ged without characteristic scale. Wee-
kly, monthly or yearly, it was possi-
ble to observe distributions with high 
peaks and “fat” tails that frequently 
followed a power of law31. For this 
reason, Mandelbrot concluded, “the 
very heart of finance is a fractal” 
(Mandelbrot, 2004, 165). 

The importance of Mandelbrot’s 
discovery is that it highlights that 
under the apparent disorder of capi-
tal markets, there are some “stylized 
facts” that can describe the behavior 

31  This implies that graphs will not fall toward zero as sharply as a Gaussian curve.
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of capital markets. For instance, in 
Mandelbrot’s opinion, large and dis-
continuous price changes are far more 
common than what the Gaussian 
hypothesis predicts. 

As observed in financial markets, 
transactions occur at different instants 
of time and are quoted in distinct units; 
hence, mathematically speaking a pri-
ce series is never continuous. If prices 
move smoothly from one value to the 
other, it is possible to approximate the 
distribution to a normal. However, for 
Mandelbrot, prices are merely discon-
tinuous as they go up or down very 
steeply, and even more, they tend to 
group. Thus, discontinuity is in fact 
a very common property of financial 
markets, and it is reflected in the “fat 
tails” of the distributions32.

Dependence is also an important 
property for financial time series. In 
particular, long-term memory de-
monstrates that aleatory influences in 
the starting conditions play an impor-
tant role in shaping the behavior of a 
dynamical system in the future. The-
refore, contrary to the independence 

assumption of a random market, in a 
fractal market past events cannot be 
excluded. 

b) From a random walk to a 
multifractal process

Evidently, under these new as-
sumptions of market behavior, it is 
not possible to represent variation 
of prices by the neoclassical random 
walk. Therefore, Mandelbrot (1997) 
proposed the Fractional Brownian 
Motion (FBM), sometimes referred 
to as 1/f (fractional) noise. This sto-
chastic process starts with the familiar 
Brownian motion: the distance trave-
led is proportional to the same power 
of the time elapsed33. However, in a 
fractional Brownian motion H34 can 
range from zero to one allowing the 
process of price variations to descri-
be the “wild” randomness of financial 
data. Because of the different fractio-
nal values that H can take, it is called 
a Fractional Brownian Motion. An  
H = 0.5 describes a Gaussian random 
process, an H < 0.5 means an anti-

32 In Mandelbrot’s words: “Discontinuity far from being an anomalous best ignored, is an es-
sential ingredient of markets that helps set finance apart from the natural science (…) [The only 
reason for assuming continuity] is that you can open the well-stocked mathematical toolkit of 
continuous functions and differential equations” (Mandelbrot, 2004, 86).
33  For a random fractal with a prescribed Hurst exponent, it is only necessary to set the initial 
scaling factor for the random offsets to 
½ (|S + 1|2H - 2|S|2H - |1|2H) .
34  Here, H is referred to the Hurst Exponent.
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persistent behavior35, and an H > 0.5 
is related to a persistent case36. 

The following “cartoons”37 illus-
trate better the difference between a 
Brownian Motion and a Fractional 
Brownian Motion with different Hurts 
Exponents: 

Within this framework, two kinds 
of processes can be distinguished. A 
uniscaling or unifractal process, whe-
re its scaling behavior is determined 
from a unique constant H. This is in-
deed the case of a linear self-affine 
processes and, H is the self-affinity 
index or scaling exponent of the pro-
cess. The other is a multiscaling pro-
cess or multifractal, where different 
exponents characterize the scaling of 
different moments of the distribution. 
More precisely, it consists in letting 
the exponent H to depend on t, and to 
be chosen among infinity of possible 
different values. The key here is to in-
troduce trading time38, as price varia-

35 In this case, a positive trend is follow by a negative one, and a negative by a positive. For 
that reason, an antipersistent system covers less distance than a random process.
36 Long-term memory effects characterize a persistent behavior. In other words, what happens 
today influences subsequent changes or in chaotic terms, initial conditions affect future dynam-
ics. This effect occurs regardless of time scale. For instance, daily returns are correlated with 
future daily price changes; as well as weekly changes are correlated with future weekly changes. 
For that reason, it is said that there is no characteristic time scale.
37 Mandelbrot named his graphs “cartoons” to avoid misunderstanding with what is known as 
models. He uses this term “in the sense of the Renaissance fresco painters and tapestry designer: 
a preliminary sketch in which the artist tries out a few ideas, and which if successful becomes a 
pattern for the full oeuvre to come” (Mandelbrot, 2004, 117).
38 Trading time is well defined in the stock exchange as the time that elapses during the open 
market hours. The introduction of this concept into financial models changes the Newtonian 
belief of absolute time to the relative concept of Einstein.

Figure 2.1: fbm with different Hurst expo-
nents. The upper graph has an H=0.3, the 
middle graph has an H=0.5 and the bottom 
graph has an H=0.75 (Taken from Mandel-
brot, 2005, 187). 
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tions are best not followed in physical 
clock time but rather in trading time. 
“To implement this idea in a scaling 
world, one must identify price varia-
tions as a scaling function of trading 
time, and trading function as a scaling 
function of clock time”39 (Mandelbrot, 
1997, 55). 

Figure 2.2: This 3D cube represents the “Baby 
Theorem”. The right wall is the mother that 
provides a Brownian Motion in conventional 
clock time. The jagged line in the middle of 
the graph is the father, which deforms clock 
time into trading time. And the left wall is the 
multifractal baby measured in trading time. 
(Taken from Mandelbrot, 2004, 214)

Using Monte Carlo simulation40, Man-
delbrot was able to test the model in 
the computer. The result was a statis-
tical similarity in the behavior of mar-

ket prices. It was not completely iden-
tical, since the inputs were reduced to 
a smaller number of parameters, and 
thus, the outcome was undoubtedly 
affected. But as Mandelbrot explains: 

“In financial modeling all we need is a 
model “good enough” to make financial de-
cisions. If you can distill the essence of GE’s 
stock behavior over the past twenty years, 
then you can apply it to financial enginee-
ring. You can estimate the risk of holding the 
stock to buy your portfolio. You can calcu-
late the proper value of options you want to 
trade on the stock. This is, of course, exactly 
the aim of all financial theory, conventional 
or not. The one difference: This time around, 
it would be nice to have an accurate model”. 
(Mandelbrot, 2004, 221).

As it is observed, the importance of 
these models is that they take into ac-
count the “stylized facts” of financial 
markets, or in mathematical terms the 
“invariances”, to statistically describe 
the real behavior market dynamics. 
Borland, Bouchard, Muzy and Zum-
bach (2005) characterized them as 
universal, in the sense that are com-
mon across different assets, markets 
and epochs. Similar to Mandelbrot 
insights, these authors found that em-

39 For a more detailed explanation refer to Mandelbrot (1997) and Calvet and Fisher (2002).
40 Broadly speaking, Monte Carlo simulations are numerical simulations of random variables 
made by advance computer techniques. They were first “developed as a technique of statistical 
sampling to find solutions to integration problems” (Jorion, 2007, 308). The importance of this 
method is that is an open-form technique, in the sense that it generates a whole distribution of 
possible outcomes, each of which allows the variables to migrate within predefined limits.
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pirical data is characterized by certain 
qualitative properties: 1) the distribu-
tion of returns is in fact non-Gaussian, 
especially for short intervals of time 
that have a stronger kurtosis41; 2) vo-
latility is intermittent and correlated 
what is known as volatility clustering; 
3) Price changes scale anomalously 
with time (“multifractal scaling”). 
These are, indeed, not statistical irre-
gularities, but the rules of market be-
havior. 

Nevertheless, it is important to 
highlight that despite Mandelbrot’s 
remarkable proposition, the search of 
a faithful financial model is not over 
yet. With Mandelbrot’s investigations 
now it is possible to know that price 
changes behave very different from a 
random walk. But being such an un-
developed field, it is still subject to 
possible improvements42. 

b) From Normal Distributions to 
Stable Paretian Distributions

For financial analysts, accepting 
Mandelbrot’s ideas also means that 
the assumption of normal distribution 
is incorrect, as they do not account for 

discontinuity. For this reason, Man-
delbrot proposed in his early work of 
1960’s to replace the Normal or Gaus-
sian distribution assumption for the 
Stable Paretian Hypothesis. Mainly, 
stable Paretian distributions allow 
scaling properties or power law rela-
tionships. 

Scaling distributions were first 
studied by Vilfredo Pareto, Italian 
economist, in his investigation of per-
sonal income in Italy. Pareto found 
that social classes were represented 
with a “social arrow” (not a pyramid), 
very fat at the bottom representing the 
poor mass of men, and very thin at the 
top describing the wealthy elite (Man-
delbrot, 2004, 153-154). Pareto then 
modeled the wealth of individuals 
using the distribution y = x-v, where 
y is the number of people having in-
come x or greater than x, and v is an 
exponent that Pareto estimated to be 
approximately 1.5. When calculating 
this relationship to other geographical 
areas, Pareto found that this result was 
also applicable to countries such as 
Ireland, Germany and even Peru. 

Pareto’s basic observation of a 
power of law was vey insightful. In 

41 “Kurtosis describes the degree of flatness of a distribution” (Jorion, 2007, 87)
42 For instance, currently theorists are connecting multifractal Brownian motion with levy 
distributions to capture jumps, heavy tails, and skewness. This research was motivated since fbm 
are generated from Gaussian random variables, thus they have less power to capture heavy tails. 
They are also including garch processes and other techniques for improving forecast volatility. 
For more information of these developments please refer to Sun, Rachev and Fabozzi (2008).
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his distribution of personal income 
Pareto involved tails that were heavy 
and followed a power-law distribution 
represented by Pr(U>u) = u-∞43. In this 
case, the probability of finding a va-
lue of U that exceeds u depends on α. 
Such power laws are very common in 
physics and are a form of fractal sca-
ling44. 

Figure 2.3: Pareto’s 1909 diagram of the in-
come curve (Taken from Mandelbrot, 2004, 
154).

The long tailed distribution found in 
Pareto’s work, led the French mathe-
matician Levy, to formulate a genera-
lized density function named Stable 
Paretian distribution, in which the 
normal and the Cauchy conform a 
special case45.

These distributions can be descri-
bed by four parameters: α, β, δ and γ. 
The locational parameter is δ, and if α 
is greater than one, δ will be equal to 
the expectation or mean of the distri-
bution. The scale parameter is γ, and 
it can be compared to the measure of 
dispersion. Its value can be any posi-
tive number (Fama, 1963, 298 - 299). 
When γ = 1 and δ = 0, the distribution 
is said to be in its reduced form.

Nevertheless, α and β are the two 
parameters that determine the shape 
of the distribution. The parameter β is 
an index of skewness46 and must be in 
the interval between -1 ≤ β ≤ 1. When 
β = 0 the distribution is symmetric; if 
β > 0 the distribution is skewed right, 
and if β < 0 is skewed toward the left. 
On the other hand, α is the variable 
that describes the total probability 

43 As applied to a positive random variable, the term scaling signifies scaling under condition-
ing. To condition a random variable U specified by the tail distribution P(u) = Pr ( U > u). The 
power law is due to the characteristic exponent α.
44 Fractals also scale also by a power law, more specifically, in fractals the range increases 
according to a power.
45 A Cauchy curve is a probability distribution with undefined mean, variance and other high-
er moments. Although it looks similar to a normal distribution, because of its symmetry and 
bell-shape curve, it has much heavier tails and higher peaks.
46 “Skewness describes departures of symmetry” (Jorion, 2007, 86). 
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contained in the extreme tails. It is 
called the index of stability or charac-
teristic exponent, and must be in the 
range from 0 < α ≤ 2. When α = 2, the 
distribution is normal and the varian-
ce exists. When α < 2, there are more 
observations in the tails that under the 
normal distribution47, and even more 
the variance becomes infinite or un-
defined48. 

Stable Paretian distributions have 
some desirable characteristics that 
allow them to describe the patterns of 
financial markets. First, they are inva-
riant under addition meaning the sum 
of two Paretian distributions is itself 
stable Paretian49. This stability holds 
even when the values of the location 
and scale parameters, δ and γ, are not 
the same for each individual variable. 

Figure 2.4: The three distributions: Normal, Cauchy and Stable Paretian. As it is observed, 
the former represents the intermediate curve between the Normal and the Cauchy Distribution  
(Taken from Mandelbrot, 2004, 40)

Cauchy
Distribution

Normal
Distribution

Stable Paretian
Distribution

47 In other words, a small value of α, implies thicker tails of the distribution.
48 Infinite variance implies that the variance of the time series changes over different samples 
and generally increases with the sample size. Therefore, it does not settle down to some constant 
value as it is assumed with normal distributions. This will entail that the sample variance is not 
statistically significant. If α ≤ 1, the same will happen for the mean as it would not exist in the 
limit. Nevertheless, it is important to point out that as in all fractal structures, there is eventually 
a time frame where fractal scaling ceases to apply, and thus there could be a sample size where 
variance does indeed become finite. But within our life time (at least 100 years), stable distribu-
tions will behave as if they have infinite variance.
49 Indeed, this is the reason why they received the name stable. Stable means that the basic 
properties of an object remain unaltered even though it is rotated, shrunk, or even add it to some-
thing else.



252

pp. 229-264 - N.º 5 / 2009-2010

Second, they allow an asymmetric 
representation of the distribution of 
returns with high peaks and fat tails. 
As a result, with these distributions it 
is possible to model abrupt and dis-
continuous changes. Examples of this 
behaviour are found in market critical 
dynamics that amplify the bullish or 
bearish sentiment. 

These distinctive characteristics 
led Mandelbrot (1963a) to propose the 
Stable Paretian Hypothesis arguing 
that “1) the variance of the empirical 
distribution behave as if they were in-
finite; 2) the empirical distributions 
conform best to the non-Gaussian 
member of a family of limiting dis-
tributions called stable Paretian”. 
(Fama, 1963, 298). His basic idea is 
to model the percentage changes in a 
price as random variables with mean 
zero, but with an infinite standard de-
viation. In other words, the distribu-
tion of speculative prices is defined 
by the interval 1 < α < 2, contrary to 
the Gaussian hypothesis that states 
that α = 2. 

For the moment, Mandelbrot’s 
hypothesis cannot be taken as defi-

nite. As it is observed, this statement 
was proposed in the early 1960’s, and 
at that time, it received support for a 
small group of economists, including 
Eugene Fama. However, with the re-
lease of the famous survey of Fama 
in 1970 about efficient markets, the 
academy disregarded Mandelbrot’s 
idea in favor of the Gaussian assump-
tion. Therefore, empirical evidence 
is not so extensive in this topic, and 
it is still necessary to prove if indeed 
α ranges in the interval 1 < α < 2. It 
could take lower or higher values, for 
instance50. 

However, the idea that distribu-
tions of returns are in fact non-Gaus-
sian deserves more attention. This 
proposition is important because it 
highlights that there are more large 
abrupt changes, and hence, markets 
are inherently more risky than those 
described by a Gaussian market. For 
this reason, some financial researchers 
have started to investigate the validity 
of this assumption in risk models. Ra-
chev, Schwartz and Khindanva (2003) 
present one of the most complete in-
vestigations on the measurement 

50  The empirical analysis of testing the Stable Paretian Hypothesis will not be included in this 
article. Even so, it is important to highlight that some researchers have found that indeed α devi-
ates from the Gaussian case of 2. One of the most recent studies is Johnson, Jefferies and Ming 
Hui (2003), which investigated the composite index recorded in a daily basis between 1966 and 
2000, and the Shangai stock exchange index recorded at 10-s intervals during the period of eight 
months in 2002. In this study, they found that alpha equals to 1.44 for both markets. Although this 
value can change from market to market, it does prove that markets have scaling properties.
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of Value at Risk (VaR)51 with stable 
paretian distributions. These authors 
compared the results of normal-VaR 
with stable Paretian-VaR, concluding 
the following:

1) The stable modeling genera-
lly results in a more conservative and 
accurate 99% VaR estimate than the 
one made with the normal distribution 
assumption. In fact, the normal distri-
bution leads to overly optimistic fore-
casts of losses in the 99% quantile. 

2) With respect to the 95% VaR 
estimation, the normal modeling is 
acceptable from a conservative point 
of view. The stable model underesti-
mated the 95% VaR, but the estima-
te was actually closer to the true VaR 
than the normal estimate. 

Harmantzis, Miao and Chien 
(2005) found similar results52. For 
VaR estimation at a confidence level 
of 99% heavy tails models, such as the 
stable Paretian, produced “more ac-

51  VaR is a risk measure defined as the worst loss over a target horizon that will not be ex-
ceeded with a given level of confidence. If c is the confidence level, then VaR corresponds to the 
1- c lower tail level of the distribution of returns. Formally, it can be defined as follows: P ( Loss 
> VaR) = 1 - c. The choice of confidence level and time horizon depends on the purpose of VaR. 
However, the confidence level is typically between 95% and 1%. Regulation (Basel I Accord) 
recommends a 99% confidence level in a 10 days horizon.
52  The data series included four currency exchange rates: USD/Yen, Pound/USD, USD/Ca-
nadian, USD/Euro; and six stock market indices: S&P500 (US), FTSE100 (UK), Nikkei225 

Figure 2.5: Representation of Rachev, Schwartz and Khindanva (2003) studies about normal-
VaR with stable Paretian-VaR.
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curate VaR estimates than non-heavy 
tailed models, especially for data that 
exhibit heavy tails” (Harmantzis, 
Miao and Chien, 2005, 9). However, 
in the 95% confidence level, Gaus-
sian models resulted in more accurate 
VaR results. Again, Ortobelli, Rachev 
and Fabozzi (2009) concluded the fo-
llowing53: “The empirical evidence 
confirms that when the percentiles are 
below 5%, the stable Paretian model 
provides a greater ability to predict 
future losses than models with thinner 
tails” (Ortobelli, Rachev and Fabozzi, 
2009, 16). 

As it is observed, empirical eviden-
ce demonstrates that in the 99% quan-
tile VaR estimates with stable Paretian 
distributions are more accurate than 
assuming normal distributions. This 
implies a significant improvement in 
risk management’ models, as the risk 
in the extremes of the distributions 
can be measure more adequately. 

Conclusively, accepting Mandel-
brot’s hypothesis implies that current 
models based on the normal distri-
bution are misleading, as they do not 
account for the real risk in financial 
markets. In fact, this will mean a 
change in the assumptions behind the 

Black and Sholes models for pricing 
options, the Merton model for pricing 
credit risk, and, as it was demonstra-
ted, Value-at-Risk. Almost all of the 
models that Wall Street uses to make 
financial decisions nowadays would 
need to be seriously revaluated. As 
Cootner, MIT economist said in his 
review of the Mandelbrot (1963b): 
“Mandelbrot, like Prime Minister 
Churchill before him, promises us not 
utopia but blood, sweat, toil and tears” 
(Cootner, 1964d, 337). Stable Paretian 
distributions, however, seem to be a 
robust assumption as they account for 
asymmetry, and most important, for 
the “inconvenient” outliers.

Conclusion

Chaos Theory and the Science of frac-
tals have already demonstrated the 
great progress it has brought to scien-
ce. In physics, when scientists left the 
Newtonian vision of the world to ob-
serve its real complexity and rough-
ness, they were able to have a better 
comprehension of natural systems. 
For this reason, the advances that were 
done in this field motivated other dis-
ciplines to take the same step forward. 

(Japan), DAX (Germany), CAC40 (France), TSE300 (Canada). The data covered a period from 
January 1990 to December 2003; DAX started in January 1991; CAC40 in March 1991, and 
Euro/USD began in January 1999.
53  The study of these authors was made in the MSCI WorldIndex, a stock market index of 
1500 ”world” stocks. The index includes stock from emerging markets.
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For instance, the inclusion of Chaos 
Theory in economics (complex eco-
nomics) has allowed the exploration 
of economic phenomena with a more 
proper synthesis. Now, economists do 
not have to justify equilibrium, ratio-
nality and linearity; but instead they 
can address the intricate behavior of 
economic reality. 

Nevertheless, in both fields, it has 
been the effort of dissatisfied acade-
mics that have triggered a change in 
mainstream theories. In finance, this 
audacious work has been done for 
just a few, who have been ignored and 
have not received the proper atten-
tion. It seems like financial analysts 
refuse to leave their old scientific me-
thods of inquiry to embrace a new pa-
radigm more in accordance with the 
new science. As a result, the ideas and 
method of Newton’s time, reflected 
in Neoclassical theory, continue to 
be deeply rooted in the financial in-
dustry, even so the world has changed 
enormously. 

This slow advance in financial 
theory has come with a very high pri-
ce. Just in the last 20 years, it is pos-
sible to observe how financial crisis 
have augmented in number, size and 
value. Each one has struck the finan-
cial sector harder and in a more global 
scale. But in our current financial mo-
dels, these events should have never 
happened. They were so improbable 
that they were just considered far far 

far outliers. Classical models sim-
ply fail to recognize the increasing 
complexity of financial markets, and 
consequently, they have led finance 
analysts to serious estimation errors. 

For this reason, to be able to cope 
with the challenges of this new era, 
it is necessary to move away from 
the neoclassical approach to finance. 
This thesis proposes a fractal view of 
the market, as until now, it provides 
a more adequate perspective to un-
derstand financial behavior. It recog-
nizes its inefficiency and irrationality, 
and most important, it emphasizes it 
roughness. Consequently, this new 
paradigm would allow professionals 
in this area to work with the adequa-
te vocabulary and method to address 
today’s capital markets. For risk ma-
nagers, in particular, it would imply 
better models that can increase their 
awareness of the risky nature of mar-
kets. Thus, they would finally be able 
to receive clear warnings when trouble 
is ahead, and allow them to be better 
prepared. Perhaps, by adopting Chaos 
Theory and the Science of Fractals in 
finance, the next crises can truly come 
with a “discounted” value for finan-
cial institutions. 
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