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1. Introduction

The aggregate of individual decisions determines the movement of markets. From 
this observation one can ask an important question: under what mechanisms do 
these individuals behave? For example, one classical model, the efficient-market 
hypothesis, states that prices carry all the necessary information of assets (Fama, 
1970), and as a corollary, the behavior of individuals should be some function of 
their direction. Furthermore, agents can form rational expectations based on the 
dissemination and aggregation of information that markets, with appropriate in-
stitutions, allow (Plott & Sunder, 1988). One strong assumption of this proposal 
is that prices carry sufficient and complete information, but in cases of herding, 
defined as the imitation of prior actions of others and inefficient reliance on public 
information (Vives, 1997; Avery & Zemsky, 1998), prices fail to integrate private 
information that agents have because they decide on external events, causing a 
deviation from equilibrium (Banerjee, 1992).

In any case, rational expectations and herding behavior leave open the ques-
tion of the factors that allow individuals to infer the relevance of the signals (e.g. 
prices or prior actions of others). To fill this gap, in a recent paper, Brugier, Quartz, 
& Bossaerts (2010) found that social circuits of the brain, which allow people to 
make inferences about others and their states, were active during trading sessions. 
Importantly, circuits that support logic and numerical reasoning were passive, and 
not even performance on math tests (similar to the ones used to recruit in Wall 
Street) were predictive of the ability to infer the direction of the market. In their 
study, it was high performance on social tests (i.e. those that measure theory of 
the mind; ToM: the ability to infer intentionality) that predicted how well subjects 
assessed the direction of the market.

The Brugier et al. (2010) study revealed that the social tools our brain has are 
used in making decisions, but additional cognitive factors should be relevant, in 
particular our capacity to learn statistical regularities of the environment. It is 
known that in environments with feedback, subjects manage to learn the intrinsic 
probabilities of success (or failure) that options have (Estes, Campbell, Hatsopou-
los, & Hurwitz, 1989). For that reason we take the ability to capture, implicitly or 
explicitly, the statistical properties of objects in the environment (e.g. probability 
of success of a given Option A vs. Option B) as central in decision-making. For 
example, a person, e.g. a trader, who believes, given the available information, it 
is more probable that share 1 gives appropriate dividends than an alternative share 
2, should select share 1. This depends on a myriad of factors, but if the trader is 
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in a fast-paced environment, with limited time to make decisions, his selection 
should be a function of his personal abilities to implicitly assign probabilities to 
each share (assuming similar levels of dividends and prices). 

This paper, therefore, is focused on the ability to learn statistical properties, 
especially probabilities, based on the history of the object/option/share/other. Spe-
cifically, we are interested in the details of probabilistic learning, with feedback 
(for a review of a task used to assess probabilistic learning see Meeter, Radics, 
Myers, Gluck, & Hopkins, 2008) and how risk attitudes should modulate it. Our 
hypothesis is as follows: First, risk seeking subjects should have better probabilistic 
learning abilities because they explore more and collect additional evidence on the 
available options. Second, risk-averse subjects should have lower learning rates 
because they prefer to be safe and to exploit the known option. This is inefficient 
if a more lucrative alternative exists and is vaguely explored. These predictions 
will be operationalized using a multi-armed bandit game, in which exploration 
and exploitation behaviors can be observed (Daw, O’Doherty, Dayan & Seymour, 
2006) and, importantly, it is a game that mimicks actual financial decision-making 
(Payzan-LeNestour & Bossaerts, 2012). Risk attitudes will be measured using a 
typical framing effect task that captures risk behavior in gains and in losses (De 
Martino, Kumaran, Seymour, & Dolan, 2006). In addition, we conducted cognitive 
controls using Raven’s Progressive Matrices to see if the effects (if any) depend 
on personal cognitive endowments. 

2. Risk Preferences, learning and multi-armed  
bandit game

In principle, there are two general sources of learning: 1) Direct instruction and 2) 
Trial and error. The former is hardly dependent on risk attitudes because learning 
comes from a central figure which passes on knowledge, based on personal ex-
periences or previous history of instruction to the learner, who does not take risks 
because almost everything is transmitted to him or her. The latter type of learning, 
on the other hand, is the one we are interested in because it does imply risk taking. 
For example, when an infant is learning characteristics of his/her environment, 
many experiences take the form of trial and error, which depends on risk taking. 
Learning that stoves are hot can be a painful experience that requires exploration. 
In that sense, trial and error requires subjects that take risks, in the form of explor-
atory behaviors (i.e. look for new and potential better results), or play it safe, in 



O D E O N  N º  7
65

pp. 61-84 • N.º 7 / 2012-2013

the form of exploitation (i.e. continuing with the same course of action that has 
shown the best positive results so far).

One possibility of how learning occurs in trial and error, which we will refer to 
from now on as feedback environments, is reinforced learning (Kaelbling, Littman, 
& Moore, 1996; Sutton & Barto, 1998). The general framework of reinforcement 
is updating: an initial estimation is updated according to external information. For 
example, if someone is asked how many balls are in a bowl and gives an overesti-
mate, he/she can be informed via feedback. In the following turns, estimates will be 
corrected, according to the feedback, until the exact number is told. In this simple 
illustration, two elements are worth noting: 1) An initial estimate that is updated 
and 2) feedback. Importantly, sensitivity towards the feedback determines learn-
ing. This sensitivity takes the form of a learning parameter in reinforced learning 
models (formal details in the methodological section).  

One classic game, suitable for reinforced learning frameworks, is the multi-
armed bandit game (Robbins, 1952; Vermorel & Mohri, 2005). This game is a 
probabilistic environment in which learning occurs through feedback. In general, 
subjects face n levers, e.g. 4. In the simplest case, each lever has the same class of 
probability distribution (e.g. normal distribution) with different parameters (e.g. 
different means but equal standard deviations). The task of the subject is to maxi-
mize his/her reward in a given number of trials (e.g. 150 trials). He is naïve on the 
statistical properties of each lever and must learn through trial and error. 

In addition to being a suitable environment for reinforced learning, the multi-
armed bandit game allows for explorative and exploitative behaviors. For example, 
if after n trials a subject believes that lever number 3 is giving more reward than 
others, he could decide to exploit that lever. Similarly, he could also start to explore 
after some trials, to learn whether other levers are indeed less rewarding. For this 
reason, the multi-armed bandit game is an ideal environment to see if risk prefer-
ences and learning are related. In order to be successful, a balance between exploita-
tion and exploration must exist. We relate the former to risk-averse behavior, while 
the latter is closer to risk-seeking behavior. For that reason, we hypothesize that 
risk profiles and learning are connected, via exploitative and explorative behaviors.

It is important to clarify that risk attitudes are dissociable in gain and loss frames 
(Kahneman & Tversky, 1979; Tversky & Kahneman, 1981). That is, individuals 
tend to be risk seeking in losses and risk averse in gains. In their classic example, 
Tversky & Kahneman (1981) asked two groups of people to chose between two 
possible actions, one safe and the other risky. The risky option was identical in both 
groups (e.g. “there is 1/3 of probability that all will be saved and 2/3 that all will 
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die”). It was the safe option that was framed differently across groups. The first 
group saw the safe option in terms of gains (e.g. “if this option is taken, 200 out of 
600 people will be saved”) and the second group saw it in terms of losses (e.g. “if 
this option is taken, 400 out of 600 people will die”). Note that both safe options 
were identical in logical structure; they varied only in the way they were written. 
Tversky & Kahneman (1981) found that the first group played it safe, while the 
second preferred the risky option. This dissociation of risk attitudes between gain 
and loss frames is robust (meta-analysis of framing effects in Kuhberger, 1998; 
Piñon & Gambara, 2005), so we decided to use a task that captured that fact (see 
more details in the section on methodology).

3. Methodology

3.1 Participants: 

Students were recruited from a high school in Bogotá (10th grade, average age 
17). We selected this population, instead of the usual undergraduates that most 
experimental economics studies use, because they are more likely to be naïve on 
the tasks; particularly the framing task (which undergrad students of economics 
might know from one of their courses). A total of 31 male students completed all 
tasks. We ran only male students so as to simplify/avoid gender analysis.

3.2 Procedure: 

To avoid excessive effort and attention issues, two sessions, held on different days, 
were run. In the first one, students did the framing task; in the second one, they 
completed the multi-armed bandit game and the Raven’s test. Students were run in 
groups of approximately 16 students. The best students in the behavioral tasks, from 
each group, received a reward of $20,000 cop (approximately US$10 dollars). This 
reward scheme was intended to motivate students to behave as well as possible. 

3.3. Tasks:

Subjects completed 3 tasks:
a) Framing Task (Figure 1)
b) Multi-Armed Bandit game -mab (Figure 2)
c) Cognitive Control (Raven’s Progressive Matrices)
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3.3.1 Framing task: 

We based this task on the De Martino et al. (2006) design. In each trial subjects 
were told to imagine that a monetary endowment was given to them. Two options 
then appeared. On the left side there was a safe option, written either as a gain or 
a loss in relation to the monetary endowment. On the right side, there was a risky 
lottery with 20 buttons. Some of them were win-all buttons, while others were lose-
all buttons (Figure 1). The expected value of both the safe and the risky option was 
identical to elicit risk attitudes, instead of expected value computations. There were 
a total of 32 trials (4 endowments, 4 probabilities, 2 frames)1 and 16 additional 
control trials in which either the safe or the risky option had higher expected value2. 

Risk attitudes were measured as the number of times each subject decided in 
favor of the risk option in gain and loss frames, separately. A total measure of risk 
attitudes was the sum of both. Additionally we computed a rationality index as fol-
lows: the proportion of trials where the risky option was chosen in gain frames was 
substracted from the same proportion in loss frames. A value of zero indicates low 
susceptibility to the framing manipulation i.e. being equally averse to (or seeking) risk 
in either frame. This difference, in absolute values, was linearly transformed so that 0 
means least rational and 1 most rational (see more details in De Martino et al. 2006).  

Figure 1: Framing task

1 The 4 endowments were: $25,000, $50,000, $75,000 and $100,000 cop (exchange rate per 
dollar approximately $2,000 cop). The 4 probabilities were: 0.2, 0.4, 0.6, and 0.8. The two frames 
were: gain and loss.
2 Control trials had weighted expected value to confirm that subjects were choosing non-
randomly.

Usted recibio

Prefiere:

Elegir este botón para:

Elegir una de las siguientes casillas en donde:

En 16 de ellas pierde todo

En 4 de ellas gana todo

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

Quedarse con $5.000

$25.000
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3.3.2 Multi-armed bandit game (MAB):

We followed the Daw et al. (2006) design, with some modifications. Students saw 
4 buttons on screen. Each button was colored differently. Every time a button was 
pushed, a number appeared indicating how many units were won by pushing it. At 
the top of the screen, the student saw the total number of units won so far (Figure 
2). Their task was to push the buttons freely and try to maximize the total number 
of units awarded. Every student completed 149 trials.

Each button gave units following normal distributions with σ = 4 but with differ-
ent initial means: blue button 80, red button 60, yellow button 40 and green button 
30. The maximum number units were limited to 100 and the minimum to 1. To avoid 
excessive exploitation, each time a button was pushed its mean diffused as follows:

μi,t+1 = λμi,t + (1 - λ)Ɵ + ν                  (1)

where λ=0.9836 is the decay parameter, Ɵ=50 is the decay center, ν is the diffusion 
noise - which is distributed normally with a mean 0 and σd = 2.8, i stands for each 
button and t is the current trial. Notice that if a subject overexploits one button, its 
mean will eventually go to the decay center. This design, therefore, has implicit 
incentives to explore. We changed the original design of Daw et al. (2006) slightly 
because in their study all buttons diffused every time a button (any button) was pus-
hed. Our modification of only diffusing the pushed button implies that the button 
with the highest initial mean (the blue button) should attract attention faster and for 
a longer time, and in this sense it becomes a safe option. Because the existence of 
a strong button, and the fact that students were learning the statistical properties of 
the buttons, which have diffusing means, any exploration is a stronger indication 
of risk-seeking behavior than in the original design. 

Figure 2: maB (Multi-armed bandit)
                                              Acumulado
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Learning and exploitation parameters, for each subject, were estimated with 
a softmax rule, updated with a reinforced learning model as proposed in Daw et 
al., (2006), and computed with max-likelihood methods. The softmax rule was:
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 because the updating 
procedure in (3) has to start with an initial estimate. It is not possible to know it for 
each subject. To solve this, the algorithm by Jee Hoon Yoo selects random starting 
points. This is an excellent solution, in regard to the impossibility of asking subjects 
their starting estimates (even if asked, they would also make a random guess), but 
it has a cost since parameters change every time the algorithm is run (precisely be-
cause a different starting point is used). To address this issue, we ran the model 100 
times for each subject and we found that the algorithm was consistent: the param-
eters Kt, β and number of exploitations, between runs, were strongly correlated (all 
14,850 correlations, i.e. 4950 per parameter, were significant at p<0.05; the average 
rs between runs were: for Kt = 0.60, β = 0.59 and number of exploitations = 0.90; 
the average correlations between the median of each parameter and each run were: 
for Kt = 0.74, β = 0.75 and number of exploitations = 0.94) and Friedman’s Tests 
(which is the non-parametric equivalent of a one-way anova and checks if parameter 
computations between runs are different) failed significance (for Kt: χ2(99)=97.42, 
p=0.52; β: χ2(99)=78.10, p=0.94; number of exploitations: χ2(99)=66.73, p=0.99). 

Therefore, even though the algorithm used different starting points, the compu-
tations were stable. Nonetheless, to acknowledge the variability of each run, and 
because they were not symmetrically distributed, we decided to use the median of 
the parameters Kt, β and number of exploitations of the 100 runs as the relevant 
measures of the multi-armed bandit game. 

3 The algorithm can be found at http://www.cs.bris.ac.uk/~rafal/rltoolbox/index.html
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3.3.3. Cognitive control:

To see if any of the effects was due to cognitive abilities, students completed the 
Raven’s progressive matrices test. This is a well known cognitive test and it has 
been used previously in economic research as cognitive control (Burks, Carpen-
ter, Goette, & Rustichini, 2009). Basically, there are 60 trials. In each trial there 
is a set of images where one element is missing. Subjects have to choose out of 6 
options the one that best fits the pattern of images. Each trial receives one point. In 
addition to absolute scores, we calculated percentiles using the norms in Cayssials, 
Albajari, Aldrey, Liporace, Naisberg & Scheinsohn (1993). 

4. Results4

Table 1 shows that none of the learning parameters were significantly related (i.e. 
p<0.05) to risk attitudes. That is, risk seeking in loss, gain and in the total framing 
task were not strongly correlated with Kt (r(31)=0.01, p=0.92; r(31)=-0.12, p=0.50; 
r(31)=-0.06, p=0.71, respectively), β (r(31)=-0.10, p=0.57; r(31)=0.24, p=0.19; 
r(31)=0.08, p=0.66, respectively) or the number of times subjects decided to exploit 
((r(31)=-0.04, p=0.79; r(31)=-0.15, p=0.40; r(31)=-0.08, p=0.66, respectively). 

The correlations in Table 1 do not control for two important confounding vari-
ables: cognitive abilities and reaction times in the multi-armed bandit game. The 
former was related, negatively, with β (i.e. with Raven Score r(31)=-0.36, p=0.04; 
with Raven percentile r(31)=-0.34, p=0.06) and showed a positive trend with num-
ber of exploitations (r(31)=0.31, p=0.08), while the latter was strongly correlated, 
negatively, with number of exploitations (r(31)=-0.49, p<0.01). 

The cognitive results indicate that subjects with high scores tend to follow an 
exploitative strategy. This is the best strategy given that in our design one of the 
buttons was clearly better (i.e. it had a high initial average; see methodological 
section). Nonetheless, neither Raven’s score nor percentile were correlated with 
the number of times the highest paying button was pushed (r(31)=0.10, p=0.56; 
r(31)=0.10, p=0.56, respectively) or the amount of units won (r(31)=0.16, p=0.38; 
r(31)=0.16, p=0.37). Therefore, the only statement that follows from the data is that 
subjects with higher cognitive scores followed more exploitative than explorative 
behavior in our version of the multi-armed bandit game. 

4 All correlations reported in this paper are Spearman’s correlations.
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Table 1 has one supplemental finding regarding cognitive abilities worth not-
ing. We found a positive trend between the Raven score (r(31)=0.32, p=0.07) and 
Raven percentile (r(31)=0.34, p=0.05) with the rationality index from the framing 
task (low scores indicate least rational and high scores most rational; details in 
De Martino, et al. 2006). Therefore, subjects with high cognitive skills were also 
more consistent, as measured by the index. This is important because it confirms 
that decision-making is not independent of cognitive processing, both in mab and 
framing tasks (the framing results extend the findings in Burks, Carpenter, Goette, 
& Rustichini, 2009). However, at the same time it is clear that it is not about bet-
ter performance: in mab, cognitive scores were not related to any of the learning 
parameters or number of units won; in the framing tasks we used, being more 
consistent, as measured by the rationality index, is irrelevant because in each trial 
the expected value of the risky and safe option are equal. Our results only point 
out that cognitive abilities in the mab game is related to exploitative strategies and 
in the framing task to the rationality index (that only measures how consistent a 
subject is across risk situations in gains and losses). 

table 1. Correlations (spearman’s)

 Kt β # of Exploi-
tations

RT 
MABƚ

Rational-
ity Index

Risk in 
loss

Risk in 
gain

Risk 
Total

Raven 
Score

Raven 
%

Kt 1

β -0.75** 1

# of Exploi-
tations 0.24 -0.21 1

RT MABƚ -0.27 0.25 -0.49** 1

Rationality 
Index 0.22 0.05 0.07 0.04 1

Risk in loss 0.01 -0.10 -0.04 -0.25 -0.04 1

Risk in gain -0.12 0.24 -0.15 0.05 0.43** 0.60** 1

Risk Total -0.06 0.08 -0.08 -0.11 0.24 0.83** 0.92** 1

Raven Score 0.26 -0.36** 0.31* -0.06 0.32* -0.16 0.04 -0.01 1

Raven % 0.27 -0.34* 0.24 -0.05 0.34* -0.31* -0.06 -0.14 0.94** 1

*p<0.01 ƚ Reaction Times Multi-armed Bandit

**p<0.05
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As for reaction times, the negative correlation shows that faster subjects ex-
ploited. Interestingly, this means that once a subject decided to exploit, his deci-
sion was automatic; he just pushed a button repeatedly (ergo, the fast reaction 
times). This implies that exploitative strategies, in our design, were fast and as 
a corollary depend on intuitive systems, rather than reflective ones (Camerer, 
Loewenstein, & Prelec, 2005), or just follow a heuristic one (i.e. pushing any 
button fast). 

To explore the relationships of risk attitudes and learning further, via model 
parameters in the mab game, we controlled for these variables (cognitive abili-
ties and reaction times in mab) using separate linear regressions (Table 2). The 
only models that were highly explicative and significant were the ones that had 
number of exploitations as a dependent variable. In particular, in the model that 
only controlled for cognitive abilities, risk-seeking behavior in gains becomes 
a highly significant (and negative) predictor of number of exploitations. That 
is, after the cognitive control, risk seekers in gains tend to explore more. The 
results can also be interpreted alternatively: after controlling for risk attitudes, 
cognitive results strongly modulate number of exploitations. This last inter-
pretation complements the finding of Table 1, in that exploitation is positively 
related to performance in the Raven’s test, but it is stronger for risk averse in 
gains. Interestingly, the standardized coefficient for risk seeking in loss al-
most achieved a trend (i.e. p=0.105), but with positive sign. This means that, 
in general, risk-seeking attitudes consistent with Tversky & Kahneman (1981) 
proposal, of being risk seeking in losses and risk averse in gains, seems to elicit 
exploitative behavior (i.e. because of the opposite signs of the standardized 
coefficients).

The model that used rt in mab as control was also significant and it made risk 
attitudes irrelevant in regard to number of exploitations (i.e. these predictors were 
not significant in the model), which could indicate that subjects followed a heu-
ristic of pushing one button rapidly. But when both controls (Raven Percentile and 
rt in mab) were introduced, risk attitudes in gains and percentile score were again 
significant (Table 2). This is notable because it confirms that behavior in the task 
was not only a heuristic, but was also modulated by risk attitudes (in gains) and 
cognitive processing.



74

pp. 61-84 • N.º 7 / 2012-2013

table 2. standardized Coefficients/R2 
(significance)

 Dependent Variables

 
Kt β Number of 

Exploitations Units Won

Cog. Control

Risk Seeking in Loss 0.279 
(0.211)

-0.305 
(0.187)

0.301 
(0.105)

0.020 
(0.934)

Risk Seeking in Gains -0.369 
(0.102)

0.366 
(0.116)

-0.505 
(0.009)

-0.105 
(0.658)

Raven Percentile -0.398 
(0.050)

-0.237 
(0.247)

0.684 
(0.000)

0.192 
(0.363)

R2 0.162 
(0.182)

0.106 
(0.380)

0.431  
(0.001)

0.036 
(0.798)

RT. Control

Risk Seeking in Loss 0.064 
(0.788)

-0.307 
(0.191)

-0.217 
(0.304)

0.013 
(0.956)

Risk Seeking in Gains -0.171 
(0.453)

0.331 
(0.140)

-0.071 
(0.722)

-0.071 
(0.756)

RT MAB -0.108 
(0.604)

-0.220 
(0.281)

-0.510 
(0.009)

0.160 
(0.448)

R2 0.041 
(0.764)

0.100 
(0.409)

0.262 
(0.039)

0.027 
(0.861)

RT & Cog. Control

Risk Seeking in Loss 0.286 
(0.268)

-0.492 
(0.059)

0.104 
(0.592)

0.159 
(0.552)

Risk Seeking in Gains -0.374 
(0.129)

0.499 
(0.043)

-0.364 
(0.055)

-0.204 
(0.421)

Raven Percentile 0.402 
(0.063)

-0.334 
(0.115)

0.582 
(0.001)

0.265 
(0.234)

RT MAB 0.012 
(0.954)

-0.320 
(0.128)

-0.336 
(0.041)

0.239 
(0.279)

R2 0.162 
(0.311)

0.183 
(0.243)

0.517 
(0.001)

0.080 
(0.692)

Bold indicates significant model.

This does not mean that having high cognitive scores or being risk-seeking in gains 
was better. Table 2 shows that the number of units won during the MAB task was 
independent of (at least not linearly related to) these predictors (i.e. none of the 
models in Table 2 that had “Units Won” as dependent variable achieved signifi-
cance). In fact, and not surprisingly, “Units Won” was only related to the number 
of times the best button was pushed (i.e. the one with the highest initial mean; see 
methodological section) (r(31)=0.32, p=0.07), which in turn was positively related 
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to the learning parameter Kt (r(31)=0.69, p<0.01). Because this learning parameter 
was always between 0 and 1 (range: 0.00007 – 1) it implies that subjects who won 
more units captured better the error signal from the reward/feedback received in 
each trial (i.e. Kt modulates the error signal δt; see explanations of formula (3)). In 
other words, their reward-updating mechanism, via reinforced learning, seemed 
more efficient. 

5. discussion

Our initial hypothesis stated that risk attitudes had to be connected to learning in 
probabilistic and feedback environments. Simple correlations (i.e. without any 
control) failed significance (Table 1) but when cognitive scores and reaction times 
in mab were introduced as controls, risk seeking in gains emerged as an important 
negative modulator of exploitative strategies. In other words, subjects that tended 
to be risk seekers in gains explored more. Importantly, none of the risk profiles or 
cognitive scores was related to the number of units won in mab (Table 2), which 
indicates that they influence strategies, not performance. In the following paragra-
phs we will try to discuss why risk attitudes (specifically in gains) and cognitive 
abilities are connected to explorative/exploitative strategies. We will also do some 
reflections on its relevance for financial decision making and conclude with some 
limitations of our study.

5.1 Risk attitudes, cognitive abilities and decision making

Being a risk-seeker in gain is indicative of having a stronger tendency towards 
risk, because the usual finding is that people are risk averse in gains (Tversky & 
Kahneman, 1981; Kuhberger, 1998; Druckman, 2001; Gonzalez, Dana, Koshino, 
& Just, 2005; De Martino, Kumaran, Seymour, & Dolan, 2006). This observation, 
coupled with our results, suggests that people who like risk prefer to explore. 
Three complementary reasons might account for this: 1) they are sensitive to (i.e. 
they like) new feedback; 2) they dislike leaving options behind; 3) they are less 
susceptible to “hot-stove” effects. 

The first reason (sensitivity to new feedback) is supported by recent findings 
that show that prediction errors (which come in the form of feedback) elicit physi-
ological outputs and the release of dopamine in particular. That is to say, it has 
been found that prediction errors (via feedback) activate dopaminergic circuits and 
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neurons (Schultz, 1998). The fact that feedback can provoke dopamine release is 
interesting because it can be connected to actual behaviors. For example, Cohen 
et al. (2010) found that adolescents are hypersensitive to positive feedback (as 
measured by activity in the striatum, a brain region known to be sensitive to posi-
tive feedback), and they conclude that this increased signal might account for the 
risk-seeking behavior that many adolescents exhibit. An important characteristic 
of the dopamine signal is that once a result comes stable it diminishes in intensity, 
precisely because there is no prediction error in stable results. In the case of the 
mab game, once a button is learned it seizes to produce error signals and dopamine 
release is consequently reduced, making risk-seeking subjects explore new buttons. 
This depends on an increased sensitivity to dopamine in risk-seeking individuals 
compared to risk-neutral or risk-averse ones. Frydman, Camerer, Bossaerts, & 
Rangel, (2010) indeed found that risk- seeking subjects tended to carry more of the 
allele maoa-l. This gene codes for the enzime maoa which regulates the catabolism 
of monoamines, including dopamine. Those with the allele maoa-l produce less 
of this enzyme, and for this reason they decompose dopamine less efficiently (i.e. 
more dopamine is present in their synapse). All this suggests that feedback signals 
could be more potent in risk-seeking individuals, and when it ceases to appear it 
is more notable, making them explore new options (a hypothesis that has yet to 
be confirmed, but additional literature also links risk behaviors and dopamine: 
Kuhnen & Chiao, 2009; Dreber, et al., 2011). 

The second reason (dislike of leaving options behind) is an interesting phenom-
enon that has been observed experimentally by Shin & Ariely (2004). They found 
that when subjects had to decide, repeatedly, between three doors that had differ-
ent rewards distributions (similar to our button design), the threat of disappearing 
doors that were not sampled increased their attractiveness (i.e. they were selected 
more), even if they were of little interest. This is similar to another behavioral ef-
fect: foregone payoffs. When subjects are shown the outcomes of risky unselected 
options, these become more luring (i.e. in terms of selecting them more) (see details 
in Yechiam & Busemeyer, 2006). Therefore, our results can be explained because 
risk-seekers might be more susceptible to a dislike of leaving options behind and 
decide to explore, just in case.

The third reason (decreased susceptibility to hot-stove effects) refers to the 
hot-stove effect, in which learning increases risk aversion, especially if one (or 
more) of the options has positive outcomes (March, 1996) and is symmetrically 
distributed (Denrell, 2007). A hypothetical example can help to clarify and gener-
ate an intuition. Assume that an individual who goes to a new restaurant that has 
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many good and bad dishes on the menu (according to his taste). After 5 or 10 vis-
its he realizes that he really likes dish X (positive outcome). On subsequent visits 
he continues sampling more dishes, some of which are not at all tasty. The effect 
states that after learning he will eventually return, and frequently select, dish X, to 
the detriment of other options. His learning increased his preference for the safe 
dish X and made him avoid other risky options on the menu that might be good or 
bad. Notice that this depends on the fact that dish X is usually prepared the same 
way every time (symmetrically distributed). What could be happening in the mab 
environment is that risk-seekers explore more because they are less susceptible to 
selecting the same button (dish), even after learning its positive outcomes.

The previous three possibilities are hypothetical because most studies do not 
control for risk attitudes of subjects, so it is not possible, for example, to know 
if the hot-stove effect is indeed weaker in risk-seeking populations. In general, 
however, they help to explain why risk-seekers (in gains at least) prefer to explore. 
More importantly, in our results, this depended on the cognitive control. The signs 
in the regressions of Table 2 indicate that low cognitive scores coupled with high 
risk-seeking in gains, decreased exploitation (or, similarly, increased exploration). 
We have already tried to explain the results of risk seeking, so now we turn to the 
potential reason why cognitive abilities, as measured by Raven’s test, is connected 
to a strategic profile (i.e. exploitation/exploration). 

Raven’s test can be described as a pattern-recognition task: a matrix is miss-
ing one element and the subject has to pick, from a set of options, which one is 
consistent, pattern-wise, with the others. In this sense, our results have to be stated 
more precisely: pattern- recognition abilities increase exploitative behavior. This 
clarification is important because cognitive ability is not a unitary concept, and 
more importantly, it is not equivalent to intelligence, which is a complex construct 
(e.g. Gould, 1981; Sternberg, 1999) not derivable from one test (or many). 

Some authors who work with cognitive performance and economic decisions 
interpret results as “facilitation” (Benjamin, Brown, & Shapiro, 2006; Burks et 
al., 2009). That is to say, subjects with higher cognitive abilities make better de-
cisions because they process/perceive with greater ease/precision the relevant 
data and options. This is an interpretation that requires the existence of a general 
cognitive factor (call it g) that is useful for cognitive tasks as well as for economic 
tasks. The problem is that it requires extensive details on why and how the g fac-
tor uses the same tools employed in an inter-temporal task, or a risk-taking task; 
and suffice it to say that it has not been explained in sufficient detail (to the best 
of our knowledge). 
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 Alternatively, others affirm that before adhering to a facilitation stance, which 
requires a clear definition of what is a better decision (i.e. deciding between nor-
mative or positive approaches), and accepts the existence of a general cognitive 
factor g, results do point to the fact that high performers in cognitive tasks make 
decisions differently (Frederick, 2005). Our results are in line with this position. 
We found that cognitive scores on Raven’s test modulated the amount of exploi-
tations positively. This was indeed the best strategy in our design, but only if the 
highest-mean button was exploited; interestingly cognitive scores were not cor-
related with the number of times this button was pushed (r(31)=0.10, p=0.56) or 
the number of units won (Table 2). Therefore, the only statement that is supported 
by the data is that subjects with high scores exploited more. But why should this 
be the case? Raven’s test measures pattern recognition, which can be defined as 
an ability to capture regularities. We hypothesize that this notion of regularity lies 
behind exploitative behaviors. High performers in Raven’s test tend to confirm 
regularities by over sampling buttons. This is speculative but it serves to explain 
why a cognitive score, such as Raven’s, is connected to a strategic behavior.

5.2. Financial decisions

The similarity of the mab game to financial decisions has been described by Payzan-
LeNestour & Bossaerts (2012). To make their point, and among other arguments, 
they use over-the-counter (otc) transactions as an example. In these transactions it 
is important to know what to invest in and also with whom to trade, and on many 
occasions this requires sampling of both trading partners and investments. Be-
yond otc, many financial decisions require exploration/exploitation and learning, 
especially when facing assets with behavior that follows some sort of probability 
distribution. 

Our results are relevant for the two main ways of considering behavior in fi-
nance: 1) Bayesian updating (which supports proposals such as the efficient-market 
hypothesis); and 2) Behavioral finance (which supports proposals such as herding 
behavior). In the first approach, prices are corrected efficiently, via arbitrage, be-
cause subjects update their estimates following rational rules, such as Bayes (for 
more on Bayes rule in finance see Pastor & Veronesi, 2009). In the second, equilib-
rium deviations are common because people are full of psychological limitations 
that make them feel overconfident, be averse to losses, and fall prey to a myriad 
of cognitive mishaps (more on behavioral finance in Barberis & Thaler, 2003). We 
now turn to brief reflections on how our findings address each proposal.
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Bayesian updating depends on feedback. Just to recall, in the original Bayes 
formulation, the posterior probability is a function of what is called prior prob-
ability. The former can be taken as my current assessment of the probability of 
the behavior that I am interested in (e.g. prices), and the latter, my beliefs before 
any new information arrives (which is why it is called ‘prior’). Bayesian learning 
models affirm that when individuals receive new information they update their 
assessments (posterior) following a version of the original Bayes Theorem. Once 
the update is complete, the posterior becomes the new prior or belief for the next 
point of time when new information arrives (more in Griffiths, Kemp, & Tenen-
baum, 2008). 

For Bayes formulations to be efficient in markets, subjects also have to sample 
efficiently from the different options. If there is an excess of exploitation or explo-
rations, learning is truncated, precisely because Bayesian learning requires appro-
priate updating. The implications should be clear, especially if there is a short time 
span for learning. For example, if there is overexploitation of one asset (or trading 
partner in otc markets), to the detriment of others, learning will be sub-optimal. 
We found in our mab design that exploration was related to risk-seeking behavior 
in gains. To the best of our knowledge, there is no population profile of risk prefer-
ences in market professionals, such as traders. Intuitively, it should be expected to 
find a bigger percentage of risk seekers in this type of population, in comparison 
to other professions. This could mean, for example, a tendency to over-explore in 
stock markets with high density of risk seekers.

In regard to behavioral finance, we consider that our results are relevant in the 
characterization of noise traders. This type of trader behaves against tenets of ra-
tional expectations, and can influence prices away from equilibrium. Noisy trading 
can occur for a variety of reasons, but biases and heuristics have been prominent 
in explaining it. For example, on average, people exhibit belief perseverance: once 
people form an opinion/belief, they cling to it (Anderson, 2007). For Barberis & 
Thaler (2003), this and other similar cognitive phenomena can explain financial 
puzzles, such as the equity premium puzzle, which is assumed to follow from 
noisy trading. 

Our results indicate that noisy trading and deviations from equilibriums could 
be a function of strategic profiles. For example, assume that our MAB design is a 
market and that the number of times a button is pushed is a proxy for the number of 
transactions, and that they, in turn, determine the movement of prices. We should 
expect that if we divide our market into risk-seekers in gains and non-risk seekers 
in gains (while controlling for cognitive ability) to have an underpriced blue but-
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ton (the one with the highest mean) in the first market (the one with risk seekers 
in gains) because they prefer to explore other options, and make less transactions 
for the blue one. This type of interpretation is not dependent on the usual cognitive 
illusions found in behavioral finance, but on strategic profiles. In other words, it 
is more a matter of how people prefer to behave (e.g. strategies used) than their 
biases (e.g. belief perseverance). In fact, the notion that strategic profiles char-
acterize noisy traders goes in hand with heuristics programs that defend the idea 
that decision making is more about rules of behavior than information processing 
(Gigerenzer & Brighton, 2009). 

5.3 Limitations

Our experiment has three limitations that must be addressed in future investiga-
tions:
1. Results cannot be extended beyond our participants, who were all male and 

young. Future research has to explore female populations, has well as other age 
groups

2. We used an arbitrary number of runs (100) to compute the median of the para-
meters. We consider 100 runs to be sufficient, but that does not imply that the 
random methodology, used in the algorithm to find starting points, is perfect. 
In fact, starting points is a methodological challenge for reinforced-learning 
modeling that deserves thorough attention.

3. We used a very high mean for one of the buttons and we did not diffuse all the 
buttons every time one was pushed. The reason was given in the methodological 
section, but this makes our learning environment very specific and further research 
should thus use different experimental designs to check if our results hold. 

6. Conclusion 

Risk seeking, while controlling for pattern-recognition abilities, does influence 
behavior in the mab game via strategic tendencies (i.e. exploiting/exploring). This 
influence is not connected to performance, because none of the risk profiles was 
related to the number of units won in the multi-armed bandit game. Interestingly, 
neither did the cognitive control affect this variable. Therefore, even though we 
did find elements (risk attitudes in gains and pattern-recognition abilities) that ex-
plained decision-making in a probabilistic environment such as mab, we failed to 
find a clear mark on what the high performers were doing correctly.
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Implications for the field of financial decision-making are clear: strategic pro-
files in markets are important, and could affect prices. It is not only about informa-
tion processing, but also about strategies, which are a function of both cognitive 
abilities and risk profiles. 
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