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Abstract
The emergence of new techniques for capital budgeting decision criteria, such as 
real options, have not managed to displace net present value as one of the most 
used methodologies to evaluate the viability of an investment. This article seeks 
to explore the origins of present value as a technique for evaluating investment 
alternatives. William Goetzmann places the origin of this methodology in the 
Middle Ages, specifically in the first decades of the thirteenth century, in Liber 
abbaci, the masterpiece of Leonardo Pisano, better known as Fibonacci. The 
previous reassesses the belief that places this concept in Irving Fisher’s work 
of 1930. As to the origin of the nickname of Fibonacci, this investigation found 
that Pietro Cossali used and explained its meaning in his writing of 1799. This 
therefore, allows for reevaluating the belief that the nickname of Fibonacci was 
given by Guillaume Libri in 1838. Finally, this document offers a tribute to all 
those researchers, in this case of the history of mathematics, who because of 
their archaeological work rediscover advances and developments that otherwise 
would be forgotten.

Key words: History of economic thought; Leonardo Pisano (Fibonacci); 
capital budgeting criteria (net present value); Pisa.

jel classification: B10, B31, G11, N83

Resumen
El surgimiento de nuevas técnicas para la evaluación de inversiones, como las 
opciones reales, no ha logrado desplazar al valor presente neto como una de las 
metodologías más utilizadas para evaluar la viabilidad de una inversión. Este 
artículo busca explorar los orígenes del valor presente neto como una técnica 
para la evaluación entre alternativas de inversión. William Goetzmann sitúa el 
origen de esta metodología en la Edad Media, específicamente en las primeras 
décadas del siglo xiii, en Liber abbaci, la obra maestra de Leonardo de Pisano, 
más conocido como Fibonacci. Lo anterior reevalúa la creencia que sitúa este 
concepto en los trabajos de Irving Fisher de 1930. En cuanto al origen del so-
brenombre de Fibonacci, esta investigación encontró que Pietro Cossali utilizó 
y explicó su significado en un escrito de 1799. Lo anterior permite reevaluar la 
creencia de que el apodo de Fibonacci fue dado por Guillaume Libri en 1838. 
Por último, este documento ofrece un tributo a todos aquellos investigadores, 
en este caso de la historia de las matemáticas, que como consecuencia de su tra-
bajo arqueológico redescubren avances y desarrollos que de otra forma serían 
olvidados.
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Introduction

According to Barone (2008), who cites Goetzmann (2004), Leonardo Pisano (ca. 
1170-1250), Italian mathematician, better known as Fibonacci, is at the base of 
the tree of financial economics, not for the diffusion of Arabic numbers in the 
West, but rather because he was “the first to develop present value analysis for 
comparing the economic value of alternative contractual cash flows” (Barone, 
2008, p. 4).

As Rubinstein (2006) notes, the academic community placed the origin of 
the present value concepts with Fisher (1930), an author who collected previous 
developments in Fisher (1896), Fisher (1906) and Fisher (1907). In the article of 
1896, Fisher expressed that “the literal meaning of ‘present value’ implies that it 
is the actual market price today of a future sum due” (Fisher, 1896, p. 361). Sub-
sequently, in 1907, Fisher indicated that “for, of various optional employments 
of his capital, the investors select the one which offers the maximum present 
value” (Fisher, 1907, pp. 24-25). In addition, Rubinstein (2003) highlighted the 
concept of present value as one of the Great Moments in Financial Economics. 
In that publication, Rubinstein identified Johan de Witt’s work published in 1671, 
under the title Value of Life Annuities in Proportion to Redeemable Annuities, as 
one of the precursors to the definition of the present value concept.

However, because of Goetzmann’s (2004) work, the roots of the present value 
concept go back to the beginning of the thirteenth century, specifically to Pisano, 
in his work Liber abbaci, the first edition of which dates from 1202. Due to the 
foregoing, it is concluded that this is a new situation of Stephen Stigler’s law of 
eponymy (Rubinstein, 2006). As Barone (2008) states, Rubinstein (2006) relates 
at least nineteen cases of Stigler’s Law of eponymy in finance, one of them be-
ing the present value concept.

In addition, despite the emergence of new methodologies for capital budgeting 
decisions, such as real options, several research papers—Bennouna, Meredith 
& Marchant (2010); Ross, Westerfield & Jaffe (2013); Brunzell, Liljeblom & 
Vaihekoski (2013); Wnuk-Pel (2014); Andor, Mohanty & Toth (2015); Souza 
& Lunkes (2016) and Afeera Mubashar (2019)—show that net present value 
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technique remains one of the most popular methodologies for investment deci-
sion making.

This article aims to review in Liber abbaci, the way that Pisano on the one 
hand, developed what today in financial mathematics is identified as equivalence 
relations, and on the other hand, the way he used this to introduce present value 
concept, as a capital budgeting technique.

To carry out the proposed objective, this article is divided into five parts, this 
being the first. In the second section there is a brief review of the work Liber ab-
baci, a book in which Pisano introduced among others not only the present value 
concept but also the series known as Fibonacci numbers or Fibonacci sequence. 
Next, the third part details the way Pisano presented and developed both concepts 
of equivalence and present value, the latter as a tool to evaluate different invest-
ment alternatives. The fourth section is related to the rediscovery of Pisano’s work. 
It was necessary to wait eight centuries so that firstly, there was a translation of 
Liber abbaci from Latin to a modern language, like English (Sigler, 2003), and 
secondly, recognize the degree of development of financial mathematics of the 
thirteenth century, to the point that Goetzmann (2004), in the article in which he 
presented his financial findings on Liber abbaci, gives it the title of Fibonacci and 
the Financial Revolution. The fifth and last part, shall present some conclusions.

1. Liber Abbaci

Due to the relevance of Liber abbaci, the beginning of this work is presented. 
In it, Pisano showed not only the Indian numbers to which they add the zero 
and explained that with them it is possible to express any number, but he also 
presented the principles of numerical position:

Chapter 1. Here Begins the First Chapter
The nine Indian figures are:
9 8 7 6 5 4 3 2 1
With these nine figures, and with the sign 0 which the Arabs called zephir any number 

whatsoever is written, as is demonstrated below. A number is a sum of units, or a collection of 
units, and through the addition of them the numbers increase by steps without end. First, one 
composes from units those numbers which are from one to ten. Second, from the tens are made 
those numbers which are from ten up to one hundred. Third, from the hundreds are made those 
numbers which are from one hundred up to one thousand. Fourth, from the thousands are made 
those numbers from one thousand up to ten thousand, and thus by an unending sequence of 
steps, any number whatsoever is constructed by the joining of the preceding numbers. The first 
place in the writing of the numbers begins at the right. The second truly follows the first to the 
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left. The third follows the second. The fourth, the third, and the fifth, the fourth, and thus ever 
to the left, place follows place. And therefore the figure that is found in the first place represents 
itself; that is, if in the first place will be the figure of the unit, it represents one; if the figure two, 
it represents two; if the figure three, three, and thus In order those that follow up to the figure 
nine; and indeed the nine figures that will be in the second place will represent as many tens as 
in the first place units; that is, if the unit figure occupies the second place, it denotes ten; if the 
figure two, twenty; if the figure three, thirty; if the figure nine, ninety.

And the figure that is in the third place denotes the numbers of hundreds, as that in the sec-
ond place tens, or in the first units; and if the figure is one, one hundred; if the figure two, two 
hundred; if the figure three, three hundred, and if the figure nine, nine hundred, Therefore the 
figure which is in the fourth place donates as many thousand as in the third, hundreds, and as in 
the second, tens, or in the first, units; and thus ever changing place, the numbers increases by 
joining. (Sigler, 2003, pp. 17-18)

According to Devlin (2017), Pisano published two editions of Liber abbaci. The 
first one in 1202, and the second one in 1228. Of the 1202 edition, there is no 
existing copy. There are fourteen copies of the 1228 edition. Of these copies, 
three are complete or almost complete and all of them are in Italy. The first one, 
is in Biblioteca Apostolica Vaticana (Vatican Apostolic Library), better known 
as the Vatican Library in Rome, albeit an incomplete copy because chapter 10 
is missing. The second copy is in the Biblioteca Nazionale Centrale di Firenze 
-bncf- (Florence National Central Library), a copy complete, and the third one, 
is in Biblioteca Communale di Siena (Siena Public Library), an incomplete copy 
because it is missing much of chapter 15. The copy that is in bncf was used by 
Baldassarre Boncompagni (1921-1894), an Italian mathematics historian, who 
published the first reedition of Pisano’s Liber abbaci in the mid-nineteenth 
century, exactly in 1857 (Boncompagni, 1857). It is important to mention that 
this copy was made in the same language in which Liber abbaci was originally 
written, Latin. Boncompagni’s edition was the basis for the translation of Liber 
abbaci to English (Sigler, 2003), eight centuries after the first edition of Liber 
abbaci was published by Pisano in 1202. About the remaining eleven copies, 
eight are in Italy and three in France. The eight existing in Italy are distributed 
as follows: four in bncf, and the remaining four, in Biblioteca Laurenziana 
(Laurentian Library) in Florence, Biblioteca Riccardiana (Ricardian Library) in 
Florence, Biblioteca Ambrosiana (Ambrosian Library) in Milan and Biblioteca 
Nazionale Centrale (National Central Library) of Naples. The three copies that 
are in France, specifically in Paris, one is in Bibliothèque Mazarine (Mazarin 
Library) and two are in Bibliothequè Nationale de France (National Library of 
France) (Devlin, 2017).
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At this point, a small reflection about the title of Liber abbaci. Its correct 
translation is Book of calculation and not Book of the abacus. Pisano’s work 
showed that arithmetic could be done without using the abacus. Devlin (2011, 
pp. 11-12) showed the origin of this confusion:

The distinction is reflected in Leonardo’s spelling. The Latin and Italian word abbacus was 
used in medieval Italy from the thirteenth century onward to refer to the method of calculating 
with the Hindu-Arabic number system. The first known written use of the word abbacus with 
the spelling and meaning was in fact in the prologue of Leonardo’s book. Thereafter, the word 
abbaco was widely used to describe the practice of calculation. A maestro d’abbaco was a 
person who was proficient in arithmetic. In fact, abbaco still has that as its primary (preferred) 
meaning in contemporary Italian.

Medieval authors did not usually give their works titles. The name we used today for Leon-
ardo’s book comes from his opening statement:

Here begins the Book of Calculation
Composed by Leonardo Pisano, Family Bonacci,
In the Year 1202.

Liber abbaci is divided into 16 sections: Dedication and Prologue and fifteen 
chapters1. Table 1 presents the percentage that each section has in the English 
version of Liber abbaci (Sigler, 2003). As you can see, the five extended sec-
tions represent 68.4 percent of the book, and the longest section corresponds to 
Chapter 12, which is titled Here Begins Chapter 12.

Table 1: Liber abbaci’s chapter detail

Chapter No. Detail Pages No. of Pages %

Dedication and Prologue 15-16 2 0.3

1 Here Begins the First Chapter 17-22 6 1.0

2 On the Multiplication of Whole Numbers 23-38 16 2.7

3 On the Addition of Whole Numbers 39-43 5 0.8

4 On the Subtraction of Lesser Numbers from Greater Numbers 45-47 3 0.5

5 On the Divisions of Integral Numbers 49-76 28 4.7

6 On the Multiplication of Integral Numbers with Fractions 77-98 22 3.7

1 For a detailed description of the contents of each chapter of Liber abbaci, the interested 
reader can review Sigler (2003), Devlin (2011) and Devlin (2017).
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Chapter No. Detail Pages No. of Pages %

7 On the Addition and Subtraction and Division of Numbers with 
Fractions and the Reduction of Several Parts to a Single Part 99-126 28 4.7

8 On Finding the Value of Merchandise by the Principal Method 127-177 51 8.6

9 On the Barter of Merchandise and Similar Things 179-211 33 5.6

10 On Companies and Their Members 213-226 14 2.4

11 On the Allowing of Monies 227-257 31 5.2

12 Here Begins Chapter Twelve 259-445 187 31.5

13 On the Method Elchataym and How with It Nearly All Prob-
lems of Mathematics Are Solved 447-487 41 6.9

14
On Finding Square and Cubic Roots, and on the Multiplication, 
Division, and Subtraction of Them, and On the Treatment of 
Binomials and Apotomes and their Roots 

489-530 42 7.1

15 On Pertinent Geometric Rules And on Problems of Algebra 
and Almuchabala 531-615 85 14,3

Total 100.0

Source: Prepared by the author from Liber abbaci (Sigler, 2003).

2. Present value: A middle age concept

Goetzmann (2004) classified the financial problems presented in Liber abbaci 
in the following four types: a) division of profits, b) traveling merchant profits, 
c) interest rate and banking problems, and d) present value analysis. While the 
first is in Chapter 8, the remaining three are in Chapter 12. Taking into consid-
eration that the last three problems involve the concept of value of money over 
time, a detailed analysis of each of them is performed.

According to Table 1, Chapter 12 titled simply Here Begins Chapter Twelve 
is the Liber abbaci’s longest chapter, with an extension of 31.5 per cent. As can 
be seen in Table 2, Chapter 12 had nine parts. The concepts of equivalence and 
present value concept, are developed in part 6, titled On Problems of Travellers 
and also Similar Problems. By extension, this part occupies 23 pages of Liber 
abbaci (Table 2) and represents 12.3 per cent of Chapter 12.
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Table 2: Liber abbaci’s, Chapter 12. Here Begins Chapter Twelve detail

Part No. Detail Pages No. of Pages %

1 On Summing Series of Numbers 259-263 4 2.1

2 On Proportions of Numbers 263-268 5 2.7

3 On Problems of Trees and Other Similar Problems, for Which 
Solution Are Found 268-317 49 26.2

4 On the Finding of a Purse 317-337 20 10.7

5 On the Purchase of Horses among Partners According to Some 
Give Proportion 337-372 35 18.7

6 On Problems of Travellers and also Similar Problems 372-395 23 12.3

7 On the Method of False Position for Two Man Who Ship Wool 
for a Fee 395-427 32 17.1

8 On Certain Divinations 427-435 8 4.3

9 On a Series of Powers of Twos on Chessboard Squares and 
Some Other Methods 435-445 11 5.9

Total 187 100.0

Source: Prepared by the author from Liber abbaci (Sigler, 2003).

2.1. Traveling merchant profits

The first exercise that Pisano proposed in this part seeks to establish, in contem-
porary terms, the present value of a constant annuity. The annuity is represented 
by the expenses that a traveler has in the different cities he visited. In Pisano’s 
example, this amounts to 12 denari. With respect to the term of the operation, 
Pisano assimilated the trip between cities with the passage of time. In this first 
example, the traveler went from Pisa to Lucca, then from Lucca to Florence, and 
finally, from Florence to Lucca, in total he made three trips equal to three years. 
Regarding the cost of money, Pisano pointed out that the traveler in each city 
doubles his money. This leads to a one hundred percent return on investment. 
In Pisano’s words the problem:

A certain man proceeding to Lucca on business to make a profit doubled his money, and 
he spent there 12 denari. He then left and went through Florence; he there doubled his money, 
and he spent 12 denari. Then he returned to Pisa, doubled his money, and spent 12 denari, and 
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it is proposed that he had nothing left. It is sought how much he had at the beginning. (Sigler, 
2003, p. 372)

When Pisano presented the solution to this first traveler’s problem, he began to 
establish the discount factor. Since the exercise indicated that in each trip (one 
year) the traveler duplicates the money, it is relevant to point out that one denari 
in the present time is equivalent to two in the future, so the discount factor is 

equal to 1
2

. Considering the above, Pisano began to discount the different cash 

flows, which in this case are equal to 12 denari, starting with the last one. As 
indicated, the third flow is in year 3, therefore, it is necessary to discount it three 

times, equal to 1
8
1
2
∗
1
2
∗
1
2

⎛

⎝
⎜

⎞

⎠
⎟. The second cash flow that is in year 2, must be dis-

counted twice. In this way, a discount rate of 1
4
1
2
∗
1
2

⎛

⎝
⎜

⎞

⎠
⎟. The first cash flow, which 

is in year 1 is discounted once, equal to 1
2

. Since the value of the annuity is the 

same for the three cash flows, Pisano proceeded then to add the three discount 

factors, previously found, 1
8
+
1
4
+
1
2

, and obtained a discount factor for all the 

annuities, equal to 7
8

. At this point, to determine the present value of the annuity, 

Pisano multiplied the value of the annuity (12 denari), by the numerator of the 

discount factor (7), and as a result, the present value equal to 84
8

, equivalent to 

10 1
2

 denari. Pisano called this methodology of problem solving, as travellers. 

Next Pisano’s solution:

Because it is proposed that he always doubled his money, it is clear that 2 will be made from 

one. Whence it is seen what fraction 1 is of 2, namely 1
2

, which thus is written three times be-

cause of the three trips that he made: 1
2

 
1
2

 1
2

, and the 2 is multiplied by the 2 and the other twos 

that are under the fraction; there will be 8 of which you take 1
2

, namely 4, of which you take 1
2

,  

namely 2, and of the 2 you take 1
2

, namely 1. After this you add the 4 to the 2 and the 1; there 

will be 7 that you multiply by the 12 denari which he spent; there will be 84 that you divide by 

the 8; the quotient will be 1
2

 10 denari and the man had this many. For example, he doubled the 
1
2

 10 denari making 21, of which he spent 12 leaving 9; this he doubled making 18 of which he 
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spent 12 leaving 6; it again he doubled making 12, from which subtracting the expense, namely 
the 12, nothing remains, as was proposed, and thus you will be able to operate with IIII or more 
trips. (Sigler, 2003, pp. 372-373)

After presenting the solution of this problem, Pisano made a slight modification 
to it and proposed to establish the present value, under the assumption that at the 
end of the last trip (end of term), there will be a surplus of 9 denari.

From the previous result it is known that the present value of an annuity 

composed of three equal cash flows, of 12 denari each, is equal to 84
8

, so it is 

necessary to add the present value of a cash flow that is in year 3, and whose 
value is equal to 9 denari. As was seen in previous form, its discount factor is 

equal to 1
8

, so the present value of this is equal to 9
8

. In this way, to find the pres-

ent value of the annuity that has an extraordinary flow at the end of the term, it 

is enough to add the present value of each flow, that is 84
8
+
9
8

, that gives a result 

of 93
8

, equal to 11 5
8

 denari. Next, Pisano’s solution:

However if it is proposed that in the last of the aforewritten trips some denari remain after 
the expenditures, we say 9, then the 9 is added to the 84 found above; there will be 93 denari 

which is divided by the 8, as we said before; the quotient will be 5
8

 11, and he had this many 

(Sigler, 2003, p. 373).

Then Leonardo presented a series of problems in which, for example, the objective 
is to find the annuity given both a present and future value, and an interest rate.

2.2. Interest rate and banking problems

In the following example, which is identified as On a Man Who Invests for In-
terest without Notice, Pisano presents the case of an investor who deposits an 
unknown amount of money at interest (20 per cent per annum) for five years 
and seventy days. Every year and at the expiration of the term, he withdraws 
some resources, which he identifies as a dividend (30 denari annually). Unlike 
other examples, where the term is expressed in a whole number of years, in this 
situation, the investment term amounts to five years and seventy days, that is, 
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a total of 1870 days. For its solution, Pisano presented two methods. While in 
the first, he applied the methodology that he called travellers, in the second, he 
introduced the method that he called the reverse method. In this last technique, 
Pisano began by discounting the last cash flow, that as noted was placed in year 5 
plus 70 days to year 5, and then that value was added to the cash flow (dividend) 
of year 5 and discounted to year 4, and so on until the value in present time is 
reached, and this value corresponds to the value of the initial investment. Next, 
the text of On a Man Who Invests for Interest without Notice and the solution 
offered by Pisano, using travelers’ method:

Also a certain man invests denari, I know not how many, at the same interest, and how many 
must he give for a dividend of 30 pounds per year in the same house. He indeed holds in the 
house the denari for 5 years and 70 days. The amount of denari is sought. Beginning first with 
70 days, namely in order that you see how many denari he must hold 70 days in the house. And 

it will be seen so: because the interest of the first year is 1
5

 of the total capital one must multiply 

the days of the year by 5; there will be 1800 to which you add the 70 aforewritten days; there 
will be 1870; therefore in the 70 days 1870 is made from 1800, that is 187 is made from 180; 

therefore you put the 180 over the 187 thus, 180
187

; next you see how much is the dividend of the 

70 days thus; you multiply the 30 by the 70, and you divide by 360; there result 5
8

 5 pounds for 

the dividend of the 70 days; you multiply this by the 180, and divide by the 187; the quotient 

will be 115
187

 5 pounds; all of this is explained thus; you will be able to include this under the 

trip method, namely for the 5 years you say five trips. In each of the 6 is made from 5, and 30 
pounds are spent in each trip, namely the dividend; and at the end of the 5 trips, that are 5 years, 

there remain 115
187

 5 pounds which he holds in the house 70 days; therefore as we taught above, 

the 5
6

 is written down five times in order thus: 5
6

 5
6

 5
6

 5
6

 5
6

; next you will multiply the 6 by the 

6, and the 6, and the 6, and the 6; namely by all of the numbers which are under the fractions; 

there will be 7776 of which you take 5
6

 that is 6480; of it you take 5
6

 that is 5400; of this you 

take 5
6

 that is 4500; of this you take 5
6

 that is 3750; of this you take 5
6

 that is 3125; next you add 

the 6480, 5400, 4500, 3750, and 3125; there will be 23255 that you multiply by the 30 pounds 

dividend; there will be 697650. Also you multiply the 3125 by the 115
187

 5, and the product that 

results you add to the 697650, and you divide the sum with the rule for the 7776 that is 1 0 0 0 0
6 6 6 6 6

;  

the quotient will be 5 1 6 1 6
6 6 11 17

 91 pounds, and this many are the amount of the denari that he 

invested. (Sigler, 2003, p. 388)
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The first calculation that Pisano did was to find the value of the last payment 
(dividend) that is placed on day 1870. For the examples before the case On a 
Man Who Invests for Interest without Notice, he knew that the annual interest 
rate was 20 per cent, or in his terms, he obtained six denari from five, or five 
denari give one. According to this, an annual dividend of 30 denari, is equivalent 

to a dividend of 5 5
6

 for a period of 70 days 30∗ 70
360

⎛

⎝
⎜

⎞

⎠
⎟. Then Pisano determined 

the appropriate rate of discount for 70 days. The interest for 70 days equals to 
7
180

 (the result of multiplying the annual interest rate of 20 per cent or 1
5

 by 70 

days and the result, divided by 360 days). In this way, the discount rate is equal 

to 180
187

inverse of 1+ 7
180

⎛

⎝
⎜

⎞

⎠
⎟. When you applied this factor of discount 180

187
 to the 

cash flow on day 1870, that is 5 5
6

 , it results in a present value at fifth year of 

5115
187

5 5
6
∗
180
187

⎛

⎝
⎜

⎞

⎠
⎟. At this point, the problem is reduced to discounting to present 

time (year 0) the following six cash flows: from year 1 to year 5 an annual and 

equal cash flow of 30 denari, and in year 5 a cash flow of 5 115
187

 pounds. To de-

termine the discount rate to be applied to each one of the annual cash flows, it is 
enough to remember that an investment of 5 denari in the present time, becomes 
6 denari, in a term of one year, from which, the annual discount rate is equal to 
5
6

. At this point, to find the present value of the cash flows, Pisano divided the 

problem into two stages: in the first, the five equal annual cash flows each one 
of 30 denari discounted to present value, identified as P1, to which he then added 

the present value of the additional cash flow of year 5, this is 5 115
187

 denari equal 

to 1.050
187

, identified as P2.

Then, the present value of the five equal annual cash flows is equal to:

P1 = 30∗
5
6
+ 30∗ 5

6
∗
5
6
+ 30∗ 5

6
∗
5
6
∗
5
6
+ 30∗ 5

6
∗
5
6
∗
5
6
∗
5
6
+ 30∗ 5

6
∗
5
6
∗
5
6
∗
5
6
∗
5
6
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P1 = 30∗
5
6
+
25
36

+
125
216

+
625
1.296

+
3.125
7.776

⎡

⎣⎢
⎤

⎦⎥
= 30∗ 23.255

7.776
⎡

⎣⎢
⎤

⎦⎥
=
697.650
7.776

Then, the present value of the last cash flow that is in year 5, equal to 1.050
187

:

At this point, to find the present value sought, it is enough to add to the pres-
ent value of the annual series (P1) the present value of the extra cash flow (P2).

P = 697.650
7.776

+
3.281.250
187∗ 7.776

=
133.714.800
1.454.112

=
619.175
6.732

= 916.563
6.732

As is usual in Pisano’s work, the author presented more than one method for 
his application for the different problems that he dealt with in Liber abbaci. In 
the case of On a Man Who Invests for Interest Without Notice, in addition to the 
one described (travellers method), he presented an alternative solution, which 
he called the reverse method. Below is the way in which Pisano presented this 
methodology:

In another way, you find this same quantity by the reverse method. For example, the dividend 

of the fifth year, namely the 30, you add to the 
115
187

 5; there will be 
115
187

 35 that you multiply by 

5, and you divided by 6. Because he makes 6 from 5 in each year, the quotient will be 6 11
11 17

 29. 

And this is because that which will remain he will hold in the house 4 years. To this you add 

the dividend of the fourth year; there will be 6 11
11 17

 59 that you multiply by the 5, and divide 

by the 6; 
5 12

11 17
 49 will be the quotient; and this much will remain for him as he holds it in the 

house the third year. And you add this to the 30, namely to the dividend of the third year; there 

will be 5 12
11 17

 79 that you multiply by the 5, and divide by the 6; 6 7
11 17

 66 will be the quotient, 

and this much remains for him after he held it in the house the second year. To this you add the 

30, namely the dividend of the second year; there will be 6 7
11 17

 96 that you multiply by the 5 

and divide by the 6; 1 3 6
6 11 17

 80 will be the quotient, and this much remains for him as he held 

it in the house one year. And you add it to the dividend of the first year; there will be 1 3 6
6 11 17

 

110 that you multiply by the 5 and divide by the 6; 5 1 6 1 6
6 6 11 17

 91 will be the quotient, that is 91 

pounds, 19 soldi, and 1 6 10
3 11 17

 5 denari, and this much he held in the house, as we found above 

by another method. (Sigler, 2003, pp. 388-389)
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In the reverse method, Pisano started by determining the present value (in 
year 5) of the cash flow that is in year 5 plus 70 days (1870 days). Once this value 
was determined, he added it to the cash flow of year 5, that is, 30 denari, and that 
value was discounted from year 4. Next, to that value he added the cash flow of 
year 4 and discounted it from year 3, and so on, until reaching to present time.

Then application of the reverse method is presented in detail below. To begin, 
it is necessary to determine the present value, in year 5, of the cash flow that is 
in year 5 plus 70 days. For this, it is also necessary to establish the appropriate 
discount rate for a period of 70 days. As previously mentioned, the value of the 

dividends that the investor would receive at year 5 plus 70 days would amount to 

5 5
6

 denari, which would be applied to a discount factor equal to 
180
187

. This means 

that the previous dividends (located in year 5 plus 70 days) are equivalent to a 

dividend in year 5 of 5 115
187

 denari. Given the above, it turns out that in year 5 

there are two cash flows. The first one, corresponds to the dividends of the invest-
ment, which, as indicated, amounts to 30 denari. The second one, corresponds to 

the present value (in year 5) of the dividends that the investor received in year 

5 plus 70 days, that is 5 115
187

. In this way, the total value of the cash flow in year 

5 is about 35 5 115
187

 denari. As a next step, the author discounted from year 4, 

the sum of 35 5 115
187

, for which he applied a discount factor equal to 5
6

. In this 

way, he determined that the present value, in year 4, of the cash flows located 

in year 5 35115
187

⎛

⎝
⎜

⎞

⎠
⎟, amounted to 29 127

187
 denari. Then, Pisano proceeded with the 

discount of cash flows from year 4 to year 3, with the same factor or discount 

equal to 5
6

. The value of the cash flow to be deducted amounts to 59 127
187

 denari, 

which corresponds to the original cash flow of year 4, about 30 denari, to which 

the present value of the discounted cash flows was added to year 4, which, as 

noted, amounted to 29 127
187

. By discounting the prior cash flow from year 3, it 
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results in a value of 49 137
187

 denari. In this state, it continues to discount the cash 

flow from year 3 to year 2. The cash flow to be deducted amounts to 79 137
187

, 

which results from adding the value of 49 137
187

 denari to the dividend of 30 denari, 

which is in year 3. When applying the discount factor of 5
6

 on the previous value, 

it results in a present value, at year 2, of 66 83
187

 denari. Then, the discount of the 

cash flows located in year 2 to year 1 is proceeded. The discount rate remains 

the same, 5
6

. The value to be deducted amounts to 96 83
187

 denari, which results 

from adding to the value of 66 83
187

 denari the dividend of that year, which as is 

known, amounts to 30 denari. When applying the discount favor, it is observed 

that the present value in year 1, amounts to 80 415
1122

 denari. Finally, it is required 

to discount the cash flows located in year 1, which amount to 110 415
1122

 denari, to 

the present time (year 0). This value is the result of adding the dividend of 30 to 

the present value of future cash flows, which, as indicated, amounts to 80 415
1122

.  

Then, after applying the discount factor of 5
6

 to the previous sum, it is found 

that the present value (in year 0) amounts to 91 6.563
6.732

 denari. In summary, the 

value that is necessary to invest for a term of 5 years and 70 days, with annual 

payments of dividends equal to 30, with an interest of 20 per cent, amounts to 

91 6.563
6.732

 denari.

2.3. Present value concept

Near the end of Chapter 12 Section VI, there is the exercise that made Pisano 
worthy to occupy not only the base of the tree of financial economics (Barone, 
2008), but also to be recognized as the precursor of the present value concept as 
a capital budgeting criteria (Rubinstein, 2006). In Liber abbaci, that exercise is 
identified as On a Soldier Receiving Three Hundred Bezants for His Fief.
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In this problem, Pisano presented the case of a soldier whom the king rec-
ognizes an annual remuneration equal to 300 bezants for his service. That re-
muneration is paid to him in four identical quarterly installments of 75 bezants 
each. The regularity of the payment will change. Instead of being quarterly, the 
payment will change to an annual payment at the end of the fourth quarter. Under 
these circumstances, the soldier requests compensation in case of accepting the 
payment on an annual basis because he would lose the possibility of investing 
the monies he receives quarterly, which the soldier can invest at a rate of 6 per 
cent quarterly. Next, the text of the proposed exercise:

A certain soldier because of his fief received from a certain king 300 bezants each year, and 
it is satisfied in IIII payments, and in each payment he takes 75 bezants; this is a payment for 
three months which by necessity is collected together; he asks for a certain compensation in 
order to accommodate himself for interest because he accepts the 300 bezants instead of the 75 
bezants of each payment, namely from payment to payment, of the capital and profit. Voluntarily 
acquiescing to this he invests the bezants at a profit of two bezants per hundred in each month. 
It is sought how many bezants he makes in his investment. (Sigler, 2003, p. 392)

For the development of this exercise Pisano applied the travellers technique. 
According to the example, the investment of 100 bezants, produce in a period 
of three months, 6 bezants, so it is equivalent to say that 100 bezants today are 
equal to 106 bezants in three months. In this way, 100 bezants become 106, or 
what would be equal to 50 bezants invested today in three months would be-

come 53 bezants. In other words, the quarterly discount factor is equal to 50
53

.  

Returning to Pisano’s example, there are four quarterly cash flows, each one 
equal to 75 bezants, located at the end of the quarters one to four, for which it is 
necessary to find their equivalence at the present moment. In this way, the cash 

flow located in the first quarter is discounted a quarter with a factor equal to 50
53

;  

the second cash flow is discounted two quarters, with a factor equal to 50∗50
53∗53

, 

the third cash flow, is deducted three quarters, with a factor equal to 50∗50∗50
53∗53∗53

, 

and the fourth and last cash flow is discounted four quarters, with a factor equal 

to 50∗50∗50∗50
53∗53∗53∗53

. In this way, the present value of the four equal quarterly cash 
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flows of 75 bezants, with a remuneration rate of 6 per cent per quarter, amounts 

to 259 6.966.671
7.890.481

 bezants. The process is detailed below:

PV = 75∗ 50
53
+
50∗50
53∗53

+
50∗50∗50
53∗53∗53

+
50∗50∗50∗50
53∗53∗53∗53

⎡

⎣⎢
⎤

⎦⎥

PV = 75∗ 50∗53∗53∗53+50∗50∗53∗53+50∗50∗50∗53+50∗50∗50∗50
53∗53∗53∗53

⎡

⎣⎢
⎤

⎦⎥

PV = 75∗ 7.443.850+ 7.022.500+6.625.000+6.250.000
7.890.481

⎡

⎣⎢
⎤

⎦⎥
= 259 6.966.671

7.890.481

In Pisano’s words, the solution to this problem:

First indeed you strive to reduce this problem to the method of trips, and it is reduced thus; 
because in each month the profit from the 100 bezants is 2 bezants the profit for the one hundred 
is 6 bezants in the three months, namely at the time of each payment; therefore from each payment 
of 100 bezants is made 106, that is 53 is made from 50, and because there are IIII payments, IIII 
trips are similarly carried, and because the payment is 75 bezants, this is had for the expense of 

each trip. Next because 53 is made from 50, you put 50
53

 four times for the four payments, thus, 
50
53

 50
53

 50
53

 50
53

, and you multiply the 50 that is over the first fraction by the 53 that is under the 

second, and by the 53 that is under the third, and by the 53 that is under the fourth; there will 
be 7443850. Also you multiply the same 50 by the 50 of the second fraction, and by the 53 of 
the third, and the 53 of the fourth; there will be 7022500. Again you multiply the first 50 by 
the second, and by the third; there will be 125000, and you multiply by the 53 that is under the 
fourth fraction; there will be 6625000. Again you multiply the 50 by the 50, and by the 50, and 
by the 50, namely those that are over the fractions; there will be 6250000 that you add to the 
other three just found numbers; there will be 27341350 that you multiply by the 75; there will 

be 2050601250 that you divide with the 1 0 0 0 
53 53 53 53

; the quotient will be 33 6 42 46 
53 53 53 53

 259, and 

this is the amount of bezants that he makes in his investment. (Sigler, 2003, p. 392).

3. Fibonacci, from anonymity to fame, an eight-century 
journey

In this section there will be a brief review of some facts that allowed the work 
of Pisano and his masterpiece Liber abbaci, to be rescued.

In the first place, Fra Luca Bartolomeo de Pacioli (ca 1445-1517), an Ital-
ian mathematician, Franciscan friar who published his most remembered work 
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Summa de Arithmetica, Geometria, Proportioni et Proportionalitá (Everything 
about Arithmetic, Geometry, and Proportions) in Venice in 1494. This work 
contains a section identified as Particularis de Computis et Scripturs (Details of 
Computation and Recording) (Pacioli, 2010) that deals with the fundamentals of 
double-entry bookkeeping, which is why Pacioli is now recognized as the father 
of accounting and bookkeeping. For Rubinstein (2006) and Barone (2008), the 
importance of Pacioli in the history of financial economics is related to the fact 
that he included the problem of the points, also known as the unfinished game 
and despite presenting an incorrect solution, it would later give rise to the devel-
opment of modern probability (Devlin, 2008). For the case at hand, according to 
Devlin (2017), Pietro Cossali (1748-1815), Italian mathematician was the one 
who at the end of the eighteenth-century rediscovered Pisano’s work. There are 
some who accuse Pacioli of plagiarizing2 (Ciocci, 2017), however, his rediscov-
ery by Cossali four centuries later came about thanks to an appointment made by 
Pacioli, in his publication. According to Ciocci (2017, p. 107), Pacioli mentioned 
the contributions of, for example “Euclides, Boecio, Leonardo Pisano, Giordano 
Nemorario, Biaio Pelacani da Parma, Johannes de Sacrobosco and Prosdocimo 
de Beldemandis” throughout his work. Regarding Pisano, Ciocci (2017) points 
out that Pacioli quotes him on nine occasions, even pointing out that the main 
source of part of his work, was Pisano’s work. When reading Pacioli’s work, 
Cossali’s3 observed the next mention: “And since we follow for the most part 
Leonardo Pisano, I intended to clarify now that any enunciation mentioned 
without the name of the author is to be attributed to Leonardo” (Devlin, 2017, 
p. 23). After this new respect for Pisano’s work, Giovanni Battista Guglielmini 
(1763-1817), Italian physicist, published Elogio di Leonardo Pisano (In Praise 
of Leonardo Pisano) in 1812 (Guglielmini, 1812).

As Devlin (2011, 2017) indicated, the Italian historian Guillaume Libri 
(1803-1869) was the first person to refer to Leonardo Pisano as Fibonacci. Libri 
published a four volume Historie des Sciences Mathématiques en Italie, depuis 

2 In Ciocci (2017) review Part 1. No. 7. Luca Pacioli y Piero de la Francesca.
3 In the second volumen of Cossali’s work entitled Origine, transporto in Italia, primi pro-
gressi in essa dell’algebra. Storia critica di nuove disquisizioni analitiche e metafisiche (Origin 
of algebra as it was brought to Italy and its initial advances thereat) is found in the following 
terms Pacioli’s reference about Pisano: “E perche noi seguitiamo perla magior parte Lionardo 
Pisano io intendo dechisrire quando si porra aleuna proposta senza autore quella sia di detto 
Lionardo” (Cossali, 1799, p. 25).
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la Renaissance des Lettres jusqu’a la fin du dix-septième siècle (History of the 
Mathematical Sciences in Italy from the Renaissance of Literature to the seven-
teenth Century) (Libri, 1838a; Libri, 1838b; Libri, 1840; Libri, 1841) between 
1838 and 1841 in French. In the second volume, when Libri (1838b) refers for 
first time to Leonardo Pisano he does it as Leonardo Fibonacci and then simply 
as Fibonacci. In a footnote, he indicated that Fibonacci is a contraction of filius 
Bonacci, “a Latin phrase that translates literally as ‘son of Bonacci’. But Bonacci 
was not his father’s name, so we should perhaps translate the phrase as ‘of the 
Bonacci family” (Devlin, 2011, p. 13). However, in Cossali’s publication, it is 
noted that on the last page of second volume, he used the nickname Fibonacci 
to refer to Pisano (Cossali, 1799)4. Considering the above, the nickname of Fi-
bonacci should be attributed to Cossali who used in 1799 and not to Libri who 
used it later, in 1838.

With a renewed interest in Pisano’s life and work, Boncompagni published 
several works related to Pisano. For example, in 1852 he published Della vita e 
delle opera di Leonardo Pisano matematico del secolo decimoterzo (Of the life 
and work of Leonardo Pisano mathematician of the thirteenth century) (Bon-
compagni, 1852). Then he published Scritti di Leonardo Pisano (Writings by 
Leonardo Pisano) that consists of two volumes: the first of 1857, corresponds to 
the first reprint, after six centuries of Liber abbaci (Boncompagni, 1857), and 
the second of 1862, corresponds to Practica Geometriae ed Opusculi (Practical 
Geometry) (Boncompagni, 1862). It is important to mention that the reprint of 
Liber abbaci was made in its original language, Latin.

Later, during the festivities of the patron saint of Pisa, San Ranieri (Lumi-
nara of San Ranieri), the town of Pisa inaugurated on June 18, 1863 a marble 
statue of Pisano, located in the Camposanto of the city. The statue was sculpted 
by Giovanni Paganucci (ca 1829-1888) and Professor Francesco Buonamici 
(1832-1921), offered the speech for the occasion (Buonamici, 1863). According 

4 The text of Cossali’s page note: “Nel corso dell’Opera ho chiamato il benemerito Leonardo 
di Pisa, Leonardo Bonacci, laddove da altri fu detto Leonardo Fibonacci accozzando la prima 
sillaba Fi di filius al paterno nome Bonacci. Io ho stimato di volger questo a cognomen, come 
assai volte si è fatto. A taluno sarabbe forse più piacciuto il dire Leonardo di Bonacci” (Cossali, 
1799, p. 496). Traduction: During the Opera I called the meritorious Leonardo of Pisa, who was 
called Leonardo Fibonacci by others, by sipling the first syllable Fi di Fillius to the paternal 
name Bonacci. I have estimated to turn this into a cognomen [nickname], as has often been done. 
Perhaps someone like Leonardo da Bonacci would have liked more. 
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to Devlin (2017), when Baron Bettino Ricasoli (1809-1880), politician of Flor-
ence, Italy, was in charge of the provisional government of Tuscany, as prime 
minister, by Decree of September 23, 1859, he decided that the state of Tuscany 
would finance the elaboration of three statues for the same number of towns 
in the Italian Tuscany: Pisa, Lucca and Siena. The purpose of each statue “was 
to commemorate an important local person; the statue for Pisa was to be of Fi-
bonacci. The decree cited him as ‘the initiator of algebraic studies in Europe’” 
(Devlin, 2017, p. 52).

In Buonamici’s (1863) speech, he highlighted the commercial vocation of 
the city of Pisa, which took it for example to ports in Africa, and therefore was 
thusly influenced by Hindu and Arab culture. From them, Pisano learned the art 
of numbers that the Arabs received from the Hindus. Pisano showed Europe that 
the Arabic method of numbering and calculation was perfect and allowed for 
generating a unique way of expressing ideas. Pisano introduced the nine Arab 
figures and zero ignored by the Greeks and Romans and fixed the value of the 
position and deepened the many applications of this new science in commercial 
life. In another part of his speech, Buonamici rejected the idea that when Pisano 
returned to Pisa he was not well received and that he was treated with contempt 
and was called Bigollo5 or Bigollossu, saying he did not know the trade of a mer-
chant. Buonamici suggested that Pisano was called that way, perhaps because 
of his long stay in Bugia or because at that time, the term biglosus was used to 
call those who had familiarity or knowledge of two languages. Anyway, it was 
never an insult. Additionally, Buonamici pointed out that the government of the 
Republic of Pisa hired him to help public officials in the calculation, estimation 
and numbers and therefore assigned him a monthly salary of twenty liras. Later, 
Pisano was introduced to the Emperor Frederik II, to whom he dedicated two of 
his works: Liber quadratorum (The Book of Squares) and Flos super solutio-
inibus quarundam quaestionum (Flos) (Buonamici, 1863). In short, Pisano was 
appreciated by his fellow citizens.

The text of the decree with which the government of Pisa, in 1241, hired the 
services of Pisano is presented upon continuation:

5 According to Devlin (2011, p. 13), “a further name Leonardo occasionally used to refer 
to himself was ‘Bigollo’, a Tuscan dialect term sometimes used to refer to a traveler, but that 
meaning may be a coincidence, (In some old dialects the word also meant ‘blockhead’, but since 
Leonardo used the term himself, that surely was not his intended meaning)”.
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In consideration of the honor brought to the city and its citizens and their betterment by the 
teaching and zealous cooperation of that discreet and learned man, Master Leonardo Bigolli, as 
well as by his regular patriotic efforts in civic and patriotic affairs, the Pisan Commune and its 
Officials in certain right and conscious of our prerogative to make recompense for work that he 
performed in heeding and consolidating the efforts and affairs already mentioned confer upon 
this same Leonardo so meritorious of our love and appreciation an annual salary or reward from 
the Commune of 20 free denari and the usual accompaniments. This we affirm with the present 
statement. (Devlin, 2011, p. 149)

Perhaps one of the best-known exercises in Liber abbaci, which would give 
Pisano recognition, is related with a series that represents the growth of a rabbit 
population. In that series, a number is the result of the sum of the two previous 
numbers, starting with 0 and 1. Next, the text and the solution to that problem 
as given by Pisano:

How Many Pairs of Rabbits Are Created by One Pair in One Year
A certain man had one pair of rabbits together in a certain enclosed place, and one wishes to 

know how many are created from the pair in one year when it is the nature of them in a single 
month to bear another pair, and in the second month those born to bear also. Because the above-
written pair in the first month bore, you will double it; there will be two pairs in one month. One 
of these, namely the first, bears in the second month, and thus there are in the second month 3 
pairs; of these in one month two are pregnant, and in the third month 2 pairs of rabbits are born, 
and thus there are 5 pairs in the month; in this month 3 pairs are pregnant, and in the fourth month 
there are 8 pairs, of which 5 pairs bear another 5 pairs; these are added to the 8 pairs making 13 
pairs in the fifth month; these 5 pairs that are born in this month do not mate in this month, but 
another 8 are pregnant, and thus there are in the sixth month 21 pairs; to these are added the 13 
pairs that there are born in the seventh month; there will be 34 pairs in this month; to this are 
added the 21 pairs that are born in the eight month; there will be 55 pairs in this month; to this 
are added the 34 pairs that are born in the ninth month; there will be 89 pairs in this month; to 
these are added again the 55 pairs that are born in the tenth month; there will be 144 pairs in 
this month; to these are added again the 89 pairs that are born in the eleventh month; there will 
be 233 pairs in this month. To these are still added the 144 pairs that are born in the last month; 
there will be 377 pairs, and this many pairs are produced from the abovewriten pair in the men-
tioned place at the end of the one year.

You can indeed see in the margin hoe we operated, namely that we added the first number 
to the second, namely 1 to the 2, and the second to the third, and the third to the fourth, and the 
fourth to the fifth, and thus one after another until we added the tenth to the eleventh, namely 
the 144 to the 233, and we had the abovewritten sum of rabbits, namely 377, and thus you can 
in order find it for an unending number of months. (Sigler, 2003, pp. 404-405)

According to Devlin (2011, 2017), in the 1870s, the French mathematician 
Edouard Lucas (1842-1891), called the previous series Fibonacci numbers. 

 pi Rev ODEON 16_oct 6.indb   29 10/11/19   4:46 PM



30

odeon, issn: 1794-1113, e-issn: 2346-2140, N° 16, enero-julio de 2019, pp. 9-35

 Because of this series, Pisano is highly recognized. Although Devlin did not 
mention exactly in which publication Lucas identified that series as Fibonacci 
numbers also known as Fibonacci sequence, it is possible that he refers to the 
work that Lucas published in 1877 under the title Recherches sur plusieurs ou-
vrages de Léonard de Pise et sur diverses questions d’arithmétique supériure 
(Research on several works by Leonardo of Pisa and the various questions of 
arithmetic superior) (Lucas, 1877).

As Rubinstein (2006) points out in the case of present value there is a case of 
Stigler’s law of eponymy because the present value concept is credited to Fisher 
and not to Pisano, something similar happens with Fibonacci numbers that are 
credited to Pisano and not to its creator. Devlin (2011, 2017) indicates that the 
first record of the rabbit problem “appeared, it seems, in the Chandahshastra 
(The art of prosody) written by the Sanskrit grammarian Pingala sometime be-
tween 450 and 250 bce” (Devlin, 2011, p. 145).

Although Pisano and Liber abbaci disappeared for about six centuries, it can-
not be said that his work was lost and had no impact. For example, Devlin (2011) 
showed that there was later an explosion of texts, written in Italian, directed at 
a local audience, especially commercial community, known as libri d’abbaco 
(abacus book) or trattati d’abaco (abacus tracts). These new books were much 
shorter than Liber abbaci. Researchers such as Gino Arrighi (1906-2001), Ital-
ian mathematician who specialized in the mathematics of the Middle Ages and 
Warren van Egmond, who published in 1980, Practical Mathematics in the Ital-
ian Renaissance: A Catalog of Italian Abbacus Manuscripts and Printed Books 
to 1600, included more than 250 Italian abacus published until 1600. Just as 
there was a notable increase in the production of abacus books, there was also 
an important boom in arithmetic schools, in which students learned about the 
Hindu-Arabic number system. Devlin’s (2011) presented the detail of what is 
considered the oldest known syllabus that comes from the school of Cristofano 
di Gherardo di Dino, who taught in the Italian city of Pisa, in 1442. The syllabus:

This is the way of teaching the abacus in Pisa, from he beginning to the end of the students’ 
learning period, as we will say.

1. At first, when the boy begins school, he is taught how to make figures, that is 9, 8, 7, 6, 
5, 4, 3, 2, 1;

2. Then he is taught how to keep numbers in his hands, that is his left hand units and tens 
and in his right hand hundreds and thousands;

3. Then to draw numbers on tables: that is of two figures what it means, and then three fi-
gures, four figures and son on. Then how to keep them in one’s hand.
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4. Then one explains the tables of multiplication. One draws it on the table, starting from 
one times one until ten times ten one hundred, and students learn it very well by heart.

5. Then one teaches how to make divisions;
6. Then how to multiply fractions;
7. Then how to sum fractions;
8. The how to divide [fractions];
9. The how to accrue simple interest and the ‘new year’s merit’;
10. The how to measure lands or how to square a number;
11. Then how to make simple discounts and new year’s discounts;
12. Then how to calculate the ounces of silver;
13. Then the melting of silver;
14. Then one makes the comparison between the two amounts;
15. And note that to make the above-mentioned calculations, students are o use pencils ac-

cording to their level. And sometimes have them sum with their hands, or else on the 
blackboard; occasionally give them some extraordinary homework, according to the 
teacher’s will.

16. Please, note also this general rule: every evening give them homework for the following 
day according to their level. And, in case of days of rest, homework is to be doubled. 
(Devlin, 2011, pp. 109-110)

4. Conclusions

This article was able to verify that thanks to the careful work of a series of cu-
rious researchers of the history of mathematics, for example, Cossali (1797), 
Cossali (1799), Guglielmini (1812), Boncompagni (1852), Boncompagni (1857, 
1862), it was possible to rediscover the work of Leonardo Pisano at the end of 
the seventeenth century and throughout the nineteenth century, especially his 
masterpiece, Liber abbaci but also other works that he developed throughout 
his life. However, for this discovery to take place, it was necessary for Cossali 
(1797) to notice in the work of Luca Pacioli (Summa de Arithmetica, Geome-
tria, Proportion et Proportionalitá), a reference to Pisano’s work, a situation 
that shows the relevance and importance of citing the works that are consulted.

From the second half of the twentieth century, Arrighi and Egmond’s research 
allowed us to rediscover the boom that was presented after the publication of 
Liber abbaci (first edition in 1202 and second edition in 1228), first of a series of 
more short books than Liber abbaci, written in Italian, usually addressed to the 
local merchants’ community, and second, to the emergence of schools in which 
children learned the new numbering system with applications to commercial 
life. The above shows the positive impact that Pisano’s work had at the time.
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In recent times, it is Goetzmann’s (2004) work, which, when reviewing 
Pisano’s Liber abbaci in detail, discovered the important and novel financial 
applications dating from the beginning of the thirteenth century, so much so 
that his article identifies it as a financial revolution. In this way, Goetzmann’s 
discoveries made it possible to place the origin of net present value as a capital 
budgeting technique towards the beginning of the thirteenth century instead of 
the beginning of the twentieth century, as a consequence of Fisher’s work (1896, 
1906, 1930).

From the publications consulted for the development of this document, it was 
evident that the nickname of Fibonacci, by which Pisano is currently recognized, 
is not due to Libri (1838b) but rather to Cossali (1799) who apparently used it for 
the first time in 1799, pointing out in a note on the last page of that publication, 
the origin of Fibonacci’s nickname. In addition, this research rescued the speech 
that Professor Buonamici (1863) offered at the inauguration of the Fibonacci’s 
statute in the Camposanto of his hometown, Pisa, on the occasion of the festi-
vities of the saint patriot of Pisa, San Ranieri, in June 1863.

References

Afeera Mubashar, Y. B. (2019). Capital budgeting decision-making practices: eviden-
ce from Pakistan. Journal of Advances in Management Research, 16(2), 142-167. 
doi:https://doi.org/10.1108/jamr-07-2018-0055

Andor, G., Mohanty, S., & Toth, T. (June de 2015). Capital budgeting practices: A sur-
vey of central and eastern european firms. Emerging Markets Review, 23, 148-72. 
doi:http://dx.doi.org/10.1016/j.ememar.2015.04.002

Barone, L. (2008). The tree of financial economics. Rivista di Storia Economica, 24(3), 
373-86. Recuperado de https://ssrn.com/abstract=1123484

Bennouna, K., Meredith, G., & Marchant, T. (2010). Improved capital budgeting decision 
making: Evidence from Canada. Management Decision, 48(2), 225-47. Recuperado 
de www.emeraldinsight.com/0025-1747.htm

Boncompagni, B. (1852). Della vita e delle opere di Leonardo Pisano matematico del seco-
lo decimoterzo. Roma: Tipografia Delle Belle Arti. Recuperado de https://ia800203.
us.archive.org/26/items/bub_gb_FoyNx40Ih0gC/bub_gb_FoyNx40Ih0gC.pdf

 pi Rev ODEON 16_oct 6.indb   32 10/11/19   4:46 PM



O D E O N  N º  1 6
33

odeon, issn: 1794-1113, e-issn: 2346-2140, N° 16, enero-julio de 2019, pp. 9-35

Boncompagni, B. (1857). Scritti di Leonardo Pisano - Liber Abbaci. Roma. Recuperado 
de https://archive.org/stream/bub_gb_G4IL1D5PUsoC#page/n5/mode/2up

Boncompagni, B. (1862). Scriti di Leonardo Pisano - La Practica Geometriae ed Opuscoli 
(vol. 2). Roma. Recuperado de https://archive.org/details/bub_gb_JYb-VYM12ocC/
page/n3

Brunzell, T., Liljeblom, E., & Vaihekoski, M. (March de 2013). Determinants of capital 
budgeting methods and hurdle rates in Nordic firms. Accounting & Finance, 53(1), 
85-110. doi:https://doi.org/10.1111/j.1467-629X.2011.00462.x

Buonamici, F. (1863). Per la inaugurazione nel camposanto di Pisa della statua di Leo-
nardo Fibonacci. Pisa. Recuperado de https://archive.org/details/perlainaugurazio-
00buon

Ciocci, A. (2017). Luca Pacioli. La vida y las obras. Biblioteca Centro Studi Mario 
Pancrazi. Cuadernos 15. Recuperado de https://www.aeca.es/old/new/2017/argan-
te_ciocci_pacioli.pdf

Cossali, P. (1797). Origine, Transporto in Italia, primi progressi in essa dell’Algebra. Sto-
ria Crítica di Nuove Dsquisizioni Analitiche e Metafisiche Arricchita (vol. 1). Italia: 
Dalla Reale Tipografia. Recuperado de https://archive.org/details/bub_gb_4zPwM_
bjgXwC

Cossali, P. (1799). Origine, Transporto in Italia, primir progressi in essa Dell’Algebra. 
Storia Critica Di Nuove Disquisizioni Analitiche e Metafidiche Arricchita (vol. 2). 
Italia: Dalla Reale Tipografia. Recuperado de https://archive.org/details/bub_gb_
cu1eknynepic

Devlin, K. (2008). The Unfinished Game. Pasacl, Fermat and the Seventeenth-Century 
Letter that Made the World Modern. New York: Basic Books.

Devlin, K. (2011). The Man of Numbers. Fobinacci’s Arithmetic Revolution. New York: 
Walker & Company.

Devlin, K. (2017). Finding Fibonacci. The Quest to Rediscover the Forgotten Mathemtical 
Genius Who Changed the World. New Jersey: Princeton University Press.

Fisher, I. (August de 1896). Appreciation and Interest. American Economic Association, 
XI(4), 331-442.

 pi Rev ODEON 16_oct 6.indb   33 10/11/19   4:46 PM



34

odeon, issn: 1794-1113, e-issn: 2346-2140, N° 16, enero-julio de 2019, pp. 9-35

Fisher, I. (1906). The Nature of Capital and Income. New York: The MacMillan Company.

Fisher, I. (1907). The Rate of Interest. Its Nature, Determination and Relation to Economic 
Phenomena. New York: The MacMillan Company.

Fisher, I. (1930). The Theory of Interest. As Determined by Impatience to Spend Income 
and Opportunity to Invest It. New York: The MacMillan Company.

Goetzmann, W. N. (2004). Fibonacci and the Financial Revolution. Working Paper 10352, 
National Bureau of Economics Research, NBER, Cambridge, MA. Recuperado de 
http://www.nber.org/papers/w10352.pdf

Guglielmini, G. B. (1812). Elogio di Lionardo Pisano recitato nella grand’aula della 
regia Università di Bologna ne giorno XII novembre MDCCCXII dal professore G. 
B. Guglielmini. Bolonia: Giuseppe Lucchesini. Recuperado de https://archive.org/
stream/bub_gb_kmNnLZenX6kC#page/n1/mode/2up

Libri, G. (1838a). Historie des Sciences Mathématiques en Italia, depues la Renaissance 
des lettres jusqu’a la fin du dix-septiéme siécle (vol. 1). Paris: Jules Renouard et 
Cie, Libraires, Francia. Recuperado de https://ia801209.us.archive.org/19/items/
bub_gb_CF_DvuSzy8cC/bub_gb_CF_DvuSzy8cC.pdf

Libri, G. (1838b). Historie des Sciences Mathématiques en Italie, depuis la Renais-
sance des Lettres jusqu’a la fin du dex-septiéme siecle (vol. 2). Paris. Recupera-
do de https://ia800406.us.archive.org/29/items/bub_gb_4lLOM16x0FgC/bub_
gb_4lLOM16x0FgC.pdf

Libri, G. (1840). Historie des Sciences Mathématiques en Italie, depuis la reinassance des 
lettres jusqu’a la fin du dix-septiéme sciele. Paris. Recuperado de https://ia802701.
us.archive.org/21/items/histoiredesscie01librgoog/histoiredesscie01librgoog.pdf

Libri, G. (1841). Historie des Sciences Mathématiques en Italiem despues la reinassance 
des lettres jusquá la fin du dix-setiéme siecle (vol. 4). Paris. Recuperado de https://
ia800205.us.archive.org/14/items/histoiredesscie02librgoog/histoiredesscie02libr-
goog.pdf

Lucas, E. (1877). Recherches sur plusieurs ouvrages de Léonard de Pise et sur diverses 
questions d’arithmétique supériure. Paris. Recuperado de http://www.math.utah.
edu/~beebe/software/java/fibonacci/lucas_book_leonard_de_pise.pdf

 pi Rev ODEON 16_oct 6.indb   34 10/11/19   4:46 PM



O D E O N  N º  1 6
35

odeon, issn: 1794-1113, e-issn: 2346-2140, N° 16, enero-julio de 2019, pp. 9-35

Pacioli, L. (2010). The Rules of Double-Entry Bookkeeping. Lexington: IICA Publications.

Ross, S. A., Westerfield, R. W., & Jaffe, J. (2013). Corporate Finance. New York: Mc-
Graw-Hill Irwin.

Rubinstein, M. (2003). Great Moment in Financial Economics: I. Present Value. Journal 
of Investment Management, 1(1).

Rubinstein, M. (2006). A History od the Theory of Investments. My Annotated Bibliogra-
phy. New Jersey: John Wiley & Sons.

Sigler, L. (2003). Fibonacci’s Liber Abaci: A Translation into Modern English of Leonardo 
Pisano’s Book of Calculation. New York: Springer-Verlag.

Souza, P. d., & Lunkes, R. J. (2016). Capital budgeting practices by large Brazilian com-
panies. Contaduría y Administración, 61(3), 514-34. doi:https://doi.org/10.1016/j.
cya.2016.01.001

Wnuk-Pel, T. (2014). The practice and factor determining the selection of capital budge-
ting methods - evidence from the field. Procedia - Social and Behavioral Sciences, 
156, 612-16. doi:https://doi.org/10.1016/j.sbspro.2014.11.250

 pi Rev ODEON 16_oct 6.indb   35 10/11/19   4:46 PM


