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Abstract
This document explains the components of Credit Value Adjustment (cva), based 
on theoretical models and presents ideas for its implementation by financial 
institutions in Colombia using common computer tools.
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Resumen
En este documento se explican los componentes del ajuste a la valoración por 
riesgo de crédito (cva, por sus iniciales en inglés) a partir de modelos teóricos, 
y se presentan ideas para su implementación por parte de instituciones finan-
cieras en Colombia utilizando herramientas informáticas comunes.
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Introduction

Between 2007 and 2008, the world witnessed how trillions of dollars vanished 
from the financial market. The well-known “global financial crisis” hurt the 
world economy in ways that are still the subject of study. However, something 
is now clearer than ever: any financial institution can represent a threat to fi-
nancial stability.

Nobody expected the bankruptcy of gigantic financial institutions, also known 
as the “too big to fail” companies, such as Lehman Brothers and Merrill Lynch. 
These Wall Street giants went bankrupt in a matter of days as Lehman filed for 
Chapter 11 bankruptcy1 and Merrill sold for a symbolic share price. The failure 
of these institutions was a catalyst of financial destruction and the first to suffer 
the impact were the counterparties they traded with on a daily basis and with 
whom they held huge open amount positions in their portfolios. Counterparty 
credit risk was the main player during and after the crisis spread, and the need 
to quantify financial exposure was never more imperative.

1 Chapter 11 is a form of bankruptcy that involves a reorganization of a debtor’s business 
affairs, debts, and assets. Named after the U.S. bankruptcy code 11, corporations generally file 
Chapter 11 if they require time to restructure their debts.
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The depth of the financial crisis is still being measured, and it is a matter of 
global concern for the interconnected financial market.

Many studies suggest that the lack of a strong regulatory framework for otc 
derivative markets was one of the main causes of the crisis development. Some 
of this deregulation process that took place under the Greenspan administration 
is detailed in James Crotty’s paper “Structural Causes of the Global Financial 
Crisis: A Critical Assessment of the ‘New Financial Architecture’”(Crotty, 2008). 
Not a single market participant was paying attention to the counterparty risk 
involved in otc trading. Derivatives were freely traded, and risks were shared 
among all participants, including foreign investors. Because of the highly cus-
tomizable features of these products, the otc market growth had no precedence 
in the years before the crisis. Figure 1 shows the growth of otc derivatives by 
underlying risk from 1999 to 2017 (bis, 2018).

Figure 1: otc derivatives notional amount outstanding by risk category
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As evidenced in the illustration above, under Bernanke´s administration, as 
Chairman of the Federal Reserve Bank, otc derivatives grew at an exponential 
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rate from 2005 until 2008. Bernanke, an advocate of the free-market, kept inter-
est rates low and promoted free-market practices as well as the deregulation of 
derivatives. The market, as is true in nature, will find its way. As a result, the 
perfect environment where otc derivatives could grow incredibly fast was set.

Figure 1 also shows that otc Credit derivatives trading has decreased since 
2008, this due to trade compression aimed at eliminating redundant contracts 
aided by a shift towards ccp trading, as mentioned in the bis otc derivatives 
statistics at the end-June 2016 report (Bank for International Settlements, 2016). 
However, reducing the outstanding notional amounts traded in otc deriva-
tives markets is not an easy task, and in the meantime, international regulatory 
standards will have to fill the gaps between standardized markets and the huge 
highly customizable bilateral market.

While efforts in shifting towards central clearings are being made, a whole 
new set of rules and best practices were introduced to prevent financial institu-
tions from suffering liquidity and leverage problems. Basel iii, ifrs and the us 
Dodd-Frank Wall Street reform embedded regulatory standards that aimed at 
increasing the stability of the otc derivatives by forcing institutions to constantly 
measure counterparty credit risk, collateral management and cva (Credit Value 
Adjustment). As long as otc derivatives exist, there must be tools to measure 
counterparty credit risk among all participants.

Regarding that matter, all countries needed to move forward looking for 
strategies to protect their already wounded financial markets. The most devel-
oped countries were first in adopting Basel regulatory standards as the rest of 
the world followed. This meant of course that any nation whose financial in-
stitutions are interested in trading with these, will be asked to rigorously adopt 
and supervise the same set of rules. Colombia is not the exception. In fact, by 
2018 the weekly report on Financial Markets released by the Colombian Central 
Bank shows that Colombian Financial institutions trade on average 16 billion 
us dollars per week just in Fx Forward contracts with offshore counterparties, 
Figure 2 (Banco de la República, 2018).

The impact of the crisis on Colombia should not be underestimated. The 
national economy experienced an important deceleration, unemployment rates 
increased, as exports and gdp decreased. In order to maintain the already im-
portant offshore market and aiming to strengthen the local financial institutions 
against future crises, the Colombian financial supervisor decided to adopt the 
standards of Basel iii.
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Figure 2: Notional amount in fx Forward contracts with offshore counterparties
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In this context, understanding counterparty credit risk, and in particular cva, 
has become more imperative than ever in today’s Colombian financial market. 
During the last six years, the financial supervisor has been introducing a handful 
of regulatory requirements to make sure all financial institutions are judiciously 
monitoring their financial exposure to all their derivative counterparties, includ-
ing of course those that belong to the real sector of the economy.

Few of the biggest financial institutions in Colombia were familiar with the 
acronym of cva, and probably none of them have the technological tools re-
quired to price such large portfolios. In fact, most of them do not even possess 
the technological software platforms used to run front-to-back treasury opera-
tions. Others are just starting the long and exhausting task of implementing a 
treasury software capable of performing portfolio cva calculation in real time 
or at least in the end-of-day process along with accounting.

Nevertheless, technological infrastructure and software implementation are 
not the only barriers to overcome. Many of these financial institutions do not 
have the correct models to run counterparty risk valuation over their portfolios, 
and they may be resorting to the game of implementing random models to meet 
the financial supervisory regulatory standards on time. It is also a regular market 
behaviour that when under pressure some financial institutions choose to adopt 
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weak and less accurate models in order to meet regulator deadlines. In fact, many 
Colombian financial institutions have implemented cva calculations on Excel 
files with little computational power for the portfolios they hold in addition to 
not having embedded these modules into their core accounting systems. This 
of course creates high operational risks and will also lead to incorrect portfolio 
decision making. Please note that the financial supervisor may also lack the 
sufficient knowledge of counterparty credit risk, and therefore may not have 
the tools to oversee market compliance.

Prior to 2012, all financial institutions in Colombia used internal models 
to price their portfolios. This, of course meant that two financial institutions 
that traded with each other and, therefore, were reporting and pricing the same 
derivatives to the local supervisor, may have had different values on their bal-
ance sheets. This situation created price distortion and probably arbitrage op-
portunities, besides going against market efficiency theory.

By November 2012, the Colombian financial supervisory board, the Financial 
Superintendence of Colombia issued the ce050 act, in which financial insti-
tutions are forced to choose a “price vendor”, which is an entity in charge of 
providing direct prices and/or pricing supplies such as fx rates and ir curves to 
value their portfolios. A price vendor is not only a market data or price supplier, 
but also determines the models used for pricing each instrument, including otc 
derivatives (Superintendencia Financiera de Colombia, 2012).

By December 2015, the Colombian financial supervisor issued the ce041 
act, in which chapter 18 of the main regulatory financial standards book called 
“Circular Básica Contable y Financiera” had been modified including for the 
first time cva in the otc derivatives calculation (Superintendencia Financiera 
de Colombia, 2015). In it, the Financial Superintendence of Colombia set the 
rules by which financial institutions should account for counterparty credit risk 
in the pricing and reporting of otc derivatives (It is assumed that standard-
ized derivatives or central cleared instruments do not incorporate counterparty 
risk). The dilemma of whether or not central clearing is counterparty risk free 
is also discussed by Gregory, who draws attention to the dangers that arise on 
the use of central clearing. According to Gregory, ccps (Central Counterparty 
Institutions) distribute counterparty risk instead of eliminating it, since the fail-
ure of one of the members will result in the distribution of the losses among all 
surviving members. In addition, this risk-sharing results in moral hazard where 
no institutions have any incentive to monitor any of the other member’s credit 
quality since there is a third party taking the risk. As a result, central clearing 
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creates other types of risk which are shared by all members and therefore add 
up to systemic risk (Gregory, 2012).

Finally, financial institutions in Colombia face the challenge of meeting 
regulatory standards of cva and dva (Own risk) calculation in an efficient but 
accurate manner, assuring that counterparty risk is controlled and properly hedged.

The aim of this research is to explain each and every component of Credit 
Value Adjustment (cva) in detail based on theoretical models and show how 
financial institutions in Colombia would be able to implement such models in 
an efficient manner using common computational tools without investing in 
pricey treasury management systems or incurring in expensive solutions pro-
vided by price vendors. In this paper, an efficient model describes a situation 
in which financial institutions are able to run cva calculations with low time 
consumption, high accuracy and low implementation costs. In order to show that 
the model executed in this document is accurate and efficient, we will run our 
fully theoretical cva model using computational tools for a sample Fx Options 
portfolio and then compare the outcome with a simpler model used by some 
financial institutions. We will outline the differences and display the results

1. Theoretical framework

There are some concepts that need to be addressed first for a reader to fully 
understand this paper. Some are related to the mathematical concepts that un-
derlie the model that will be discussed and some are financial concepts related 
to counterparty credit risk and market risk.

1.1. Random Walk

The Random Walk is a stochastic process used in many disciplines to simulate 
or to approximate the path of an object or variable. In finances, the concept is 
used to simulate the fluctuation of stock and commodity prices. It is also con-
sidered today’s asset price model cornerstone. The model was introduced by 
Louis Bachelier in 1900 as an attempt to approximate the prices on the Paris 
stock exchange.

Mathematically, a random walk is a process where the current value of a 
variable is composed by its past value plus an error defined as white noise. In 
this sense, the random walk is presented as follows:
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ε= +−y yt t t1

Where yt is the current value of the variable, yt-1 is the past value of the variable 
and εt is an error that follows a normal distribution with zero mean and variance 
one. As described above, the process implies that the best prediction of yt is its 
current value. Which is to say that the process is also Martingale.

1.2. Brownian motion process

Brownian motion refers to the random movement of a particle observed at a 
macroscopic level in d-dimensional space. On the microscopic level, a particle 
random movement is caused by other particles hitting it or by external forces. 
It was named after Robert Brown who, in 1827, while doing his research on the 
zig-zagging motion of the particles discovered the physical phenomenon. As the 
Brownian motion is used to explain the physical phenomenon, the mathemati-
cal aspect of it is named Wiener process.

Figure 3: Planar Brownian motion

Source: Peres (2008).

Now, if the particle is evaluated at time zero S0, its position at any time n in the 
future is given as ∑= +

=
S S Xn ii

n

0 1
 where X1, X2, X3, … are assumed to be indepen-

dent and identically distributed variables. As a result, the process { }≥S n: 0n  is 
a random walk that follows the characteristics mentioned earlier. The Brownian 
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motion process is described as { }≥W t t( ) : 0 . If the process starts in zero W(t) = 0 
then the process is known as standard Brownian motion.

The Brownian motion or Wiener process follows four principles:

1. Every increment W(t) – W(s) over an interval t – s is normally distributed 
with mean 0 and variance t – s, that is  ( )− −W t W s N t s( ) ( ) 0,  .

2. For all time intervals [ ]t t,  1 2  and [ ]t t,  3 4  with < ≤ <t t t t1 2 3 4, the increments 
( ) ( )−W t W t4 3  and ( ) ( )−W t W t2 1  are independent random variables.

3. W(0) = 0.
4. W(t) is continuous for all t.

1.2.1. Geometric Brownian motion process

Since Brownian motion (bm) as presented earlier can result in negative values, 
its application on stock prices not appropriate as prices can only be positive or 
zero, ≥S 0t . As a result, a variation of the bm is presented as Geometric Brownian 
motion (gbm). Any stochastic process St is said to follow a gbm if it satisfies 
the following stochastic differential equation:

σ= +dS S dt S dWt t t t

Where Wt is a bm process and μ is drift and σ is the percentage volatility and 
both are constants.

Consequently, μSt dt determines the “trend” and σSt dWt determines the 
“random noise” effect on the trajectory.

Separating and integrating both sides we have:

∫ ∫ σ( )= +
dS
S

dt dW dtt

t
t

Since dS
S

t

t

 implies to derivative of ( )SIn t  and applying Itō then we get to:

ln dSt
St

⎛

⎝
⎜

⎞

⎠
⎟= µ −

1
2
σ 2⎛

⎝
⎜

⎞

⎠
⎟t +σWt
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Now, if applied exponentially on both sides we obtain the analytical solu-
tion of a gbm expressed by:

St = S0e
µ−

σ 2

2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟t+σWt

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

The resulting equation as gbm is used in the approximation of stock prices as it will 
only take positive values and has lognormal distribution X ∼ lognormal µ,  σ 2( ).

1.3. Value at Risk (var)

Value at risk or most often known as var is a popular market risk model that 
aims to determine the worst loss over a target horizon at a certain confidence 
level α%. This means that the resulting value will be exceeded with no more 
than a (1 – α)% probability.

Figure 4: var
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Figure 4 illustrates that the var is 125, which is the worst loss scenario at 99% 
confidence level.
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var can be calculated using three basic models:

1. Historical var: The model is based on the historical data re-organized under 
the assumption that history will repeat itself. Knowing that returns follow a 
normal distribution, once the historical data is rearranged and presented in a 
histogram, it is possible to evidence a perfectly shaped Gauss curve. Now, 
under a certain confidence level of α% one can find the worst loss scenario.

2. Monte Carlo simulation: It is said that unlike historical var, the Monte 
Carlo method for var does not rely in historical data to forecast future prices. 
As Monte Carlo is used for stochastic processes, the forecast of future prices 
must be expressed in terms of probability distribution. However, Monte 
Carlo simulations require a setting of parameters such as volatility and cor-
relations that rely on past experience. As a result, the method generates a 
number of random scenarios based on the nature of the distribution, in this 
case Normal distribution, and its variance or volatility. Again, the resulting 
data is a Gaussian curve that displays the worst loss scenario at a certain 
confidence level.

3. The variance-covariance method: This method is widely used among 
financial institutions since it takes into account more than one product and 
currency. The model makes the assumption that there is correlation between 
the analyzed assets. Therefore, under the variance-covariance method, it is 
needed not only to collect historical data but the correlation between each 
pair of assets. In the end, the var is the resulting value of using the variance-
covariance matrix.

1.4. Credit risk

Credit risk is the risk that a debtor of a credit contract may be unable to fulfill 
a contractual obligation or make a payment on the due date. From an institu-
tion’s point of view, the credit risk would be the probable risk of loss resulting 
from a borrower´s failure to make a payment. Traditionally, this is often known 
as default. In terms of capital markets, a default probability will be calculated 
throughout the lifetime of the instrument.
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1.5. Wrong way risk

The concept of wrong way risk is widely used in counterparty credit risk. It 
represents the correlation between the exposure at default and the counterparty 
default time. In other words, the Wrong Ways risk concept represents an unfa-
vorable dependence between exposure and counterparty credit quality.

There are two ways of wrong way risk, the exposure is high when the coun-
terparty is more likely to default, or the exposure is low when the counterparty 
is financially very healthy. Off course, when studying counterparty credit risk, 
we focus on the latter since the former does not pose a risk to the institution.

1.6. Counterparty risk

Counterparty risk is the risk that a business with whom one has entered into 
a financial contract will fail to make the payment or fulfill their side of the 
contract. According to Gregory, Counterparty risk represents a combination of 
market risk and credit risk. In this context, the level of exposure and the coun-
terparty’s default probability are taken into account when pricing a portfolio. It 
is said that a counterparty with a large default probability and small exposure 
may be considered preferable to a counterparty with a small default probability 
and large exposure (Gregory, 2012).

As opposed to lending risk, where the notional amount is known with a 
degree of certainty throughout the lending period and only one party takes the 
risk, in counterparty risk the value of the contract in the future is uncertain and, 
since the value can be either positive or negative the risk is typically bilateral.

1.7. Credit exposure

Credit exposure is a concept that refers to the loss in the event of a counterparty 
defaulting. Since the counterparty can default at any time, the exposure is defi-
nitely a time-sensitive measure. Now, exposure is conditional on counterparty 
default, it means that it is relevant only if the counterparty is unable to fulfill 
its contractual obligation (defaults).

The value of credit exposure can be positive or negative. A negative exposure 
will reflect that an institution is in debt to its counterparty. From counterparty 
risk perspective, a negative exposure is not relevant since the institution is 
still obliged to settle this amount; this is the case of dva. On the other hand, a 
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positive exposure will represent a loss in the event of counterparty default. It is 
assumed that the institution will still recover a fraction of the amount due (R).

Exposure is now defined as Exposure = max (value, 0) where value is as-
sumed risk-free.

Which is equal to µ +σ Z,  0( ), where Z is a normal standard variable.

1.7.1. Future Exposure

The concept of future exposure is related to the uncertainty of the value. Whilst 
past and current exposures are known, future exposure is determined probabi-
listically by future market movements and contractual features of transactions 
which are uncertain.

Figure 5: Future exposure

Contract value Future exposure

Current exposure

Today Future dateHistory

Source: Gregory (2012).

As Figure 5 shows, future exposure accounts only for positive values.

1.7.2. Potential Future Exposure

Whilst future exposure represents the positive side of all future values, potential 
future exposure (pfe) answers to the question of what the worse exposure is that 
an institution could have at a certain time in the future. Figure 6 illustrates pfe.
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Figure 6: Potential Future Exposure

Contract value

PFE

Today Future dateHistory

Source: Gregory (2010).

As it is possible to evidence, pfe calculation is exactly the same as that used 
for var. Thus, pfe is given by:

PFEα = µ +σ Φ
−1 α( )

Where Φ−1 is the inverse of a cumulative normal distribution function.

1.7.3. Expected Exposure (ee)

In addition to fe and pfe, the pricing of counterparty risk involves the calcula-
tion of Expected exposure (ee), which is the average of all positive exposures 
at a given time t.
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Figure 7: Expected Exposure

PFE (high confidence level)EE

0

Expected MtM

Source: Gregory (2010).

Given that Exposure is defined as max µ +σ Z,  0( ), and expected exposure is 
the average of its positive future values, therefore ee is defined as:

EE = µ
σ

∞∫ µ +σ x( )ϕ x( )dx = µΦ µ /σ( )+σϕ µ /σ( )

Where ϕ i( ) is a normal distribution function, and Φ i( ) is a cumulative normal 
distribution function.

1.8. Default probability

Counterparty’s default probability is a cumulative function F(t) conditional upon 
no default at the current time. The function gives us the default probability at 
any point priori t.
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Figure 8: Cumulative default probability function

100%

F(t)

q(t1, t2)

t1 t2

Source: Gregory (2012).

Figure 8 shows the cumulative default probability function. Now, the marginal 
default probability between t1 and t2 is given by:

( ) ( ) ( ) ( )= − ≤q t F t F t t t,  t     1 2 2 1 1 2

And, the instantaneous default probability is given by the derivative of F (t)

1.9. Real world vs risk-neutral default probabilities

Real world default probabilities aim to reflect the true value of a financial 
underlying and correspond to the actual assessment of a counterparty default 
probability, and they are usually extracted from historical data and past default 
experience from similar counterparties. As a result, real world probabilities are 
useful for risk management purposes.

On the other hand, risk-neutral probabilities are derived directly from the 
market. The usual starting point would be the real-world probabilities and then 
several market implied parameters are added on such as default risk premium, 
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and liquidity premium. As a result, risk-neutral probabilities reflect the market 
price and therefore are relevant for trading and hedging purposes.

Gregory argues that there is not conflict between these two default prob-
ability approaches, the difference relies exclusively in what they represent. 
(Gregory, 2012)

1.10. Recovery rates

Gregory defines recovery rates as the amount that would be recovered in the 
event of counterparty default. Recovery rates are usually expressed via loss 
given default (lgd). (Gregory, 2012)

As recovery rates represent a portion (in percentage terms) of the exposure 
that would be recovered, in terms of loss (lgd) would be defined as (1 – R).

1.11. Collateral

Collateralization is one of the key elements when discussing counterparty credit 
risk. Collateral agreements are used to limit exposure in the event of a counter-
party default. In contrast to the use of physical assets as security for debts, col-
laterals are under control of the counterparty in cash or securities, and therefore 
represent an instantaneous recovery in the event of default.

The amount of collateral is calculated based on the exposure or MtM of an 
open position. Therefore, according to the side of the exposure Party A could 
be asked to post collateral to Party B and if the exposure changes throughout 
the position lifetime collateral might be returned.

1.12. Foreign Exchange Options pricing

Option derivatives give buyers the right to buy or sell an underlying asset at an 
agreed price during a certain period of time. In the case of fx options, the un-
derlying assets are always currencies. The buyer of an Fx option gets the right 
to buy or sell any currency, the foreign currency, at an exchange rate usually 
called the Strike price or fx forward price during a certain period of time. Please 
note that when we refer to “during a certain period of time” we are considering 
American type options, which enable the buyer to use his right at any moment 
during the option life. However, Colombian Fx Option rates are mainly European 
type, which gives the buyer the right to buy or sell only on maturity date.
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As opposed to Stock Options pricing bs model, the Fx options pricing model 
needs to encompass two relevant interest rates which are also stochastic. As a 
result, it is important to describe a model that best suits the pricing of the most 
common types of options traded by financial institutions, European Fx options.

In 1983 Orlin Grabbe described a very accurate model for pricing foreign 
exchange options. In his paper The pricing of call and put options on foreign 
exchange published in the Journal of International Money and Finance, Orlin 
is able to derive close formulas for the pricing of Eurpean Fx options, starting 
from the very basics of interest rates economic equilibrium and Interest Parity 
Theorem, and finally moving forward through diffusion processes and Ito’s 
Lemma (Orlin Grabbe, 1983).

According to Orlin, the pricing formula for European Call Fx Options is:

( ) ( ) ( ) ( ) ( ) ( )= −∗c t S t B t T N d XB t T N d,  ,  1 2

Where:

S(t): is the spot domestic currency price of a unit of foreign exchange at time t.
B*(t, T): is the foreign currency price of a pure discount bond which pays one 
unit of foreign exchange at time t + T.
N(d): is the standard normal distribution.
X: is the domestic currency exercise price of an option on foreign currency 
(Strike price).
B(t, T): is the domestic currency price of a pure discount bond which pays one 
unit of domestic currency at time t + T.

And

d1 =
ln SB∗

XB
⎛

⎝
⎜

⎞

⎠
⎟+
σ 2

2
T

σ T

d2 =
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⎛
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This very same model can also be written as:

( ) ( ) ( ) ( )= −( ) ( )− − − −c t S t e N d Xe N dr T T r T T
1 2

q d s b d s

Where:

S(t): is the Fx spot rate.
X: is the Strike price.
Ts: is spot date.
Td: is the option delivery date.
rb: is base currency interest rate for period (Ts, Td).
rq: is quote currency interest rate for period (Ts, Td).

This model is also known as the Garman and Kolhagen bs extension for Fx 
Options.

2. cva Literature review

Counterparty credit risk has been around for centuries, however, Credit Value 
Adjustment (cva) is a relatively new introduced concept that emerged right 
after the subprime crisis.

cva comes from a much larger subject of study named Counterparty Risk. In 
their book “Asset/Liability Management of Financial Institutions”, Canabarro 
and Duffie define counterparty risk as the risk that Party A to an otc fails to 
fulfil its contractual obligations causing losses to Party B (Canabarro & Duffie, 
2003). As opposed to credit risk, counterparty risk is bilateral, it means that both 
parties face exposure according to the position they hold against each other.

Both, counterparty risk and cva are based on the same concepts and it is dif-
ficult to explain the former without digging into the latter. However, cva holds 
a specific purpose, and therefore its study has been intensified lately.

Simply put, one can describe cva as the adjustment to any portfolio price 
by the integration of the counterparty’s default probability. Currently, most of 
the pricing models are based in the assumption that we are trading against risk 
free counterparties, in fact, most of the discount interest rates used are also risk 
free. Nevertheless, the probability of the counterparty going bankrupt and, as 
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a result, being unable to fulfil its derivative payments is far from cero (0), and 
needs to be quantified.

A different definition of cva can be the difference between a risk-free priced 
derivative and its risk value which takes into account the counterparty’s default 
probability. cva can also be considered the cost of hedging from the counter-
party’s default probability.

Damiano Brigo, in his book Counterparty credit risk, collateral and funding, 
has also given a definition for cva. He defines cva as the difference between 
the value of a trade or a position traded with a default-free counterparty, it is 
said that the us Treasury is a default-free counterparty, and the value of this 
very same position traded with any counterparty (Brigo, 2013).

cva can be defined in several ways, but all of them pursue the same objec-
tive described above. For instance, Jon Gregory defines cva as the adjustment 
achieved by putting a value on the counterparty risk faced by an institution. 
According to this, the final price of a derivative is no longer the risky price cal-
culated based on a risk-free assumption, but a final component must be added 
(In fact is subtracted) to correct for counterparty risk (Gregory, 2012).

Having mentioned these particular two approaches to what cva is, Gregory 
defines the “real” value of a set of derivative positions in a simple formula.

Risky Value = risk free value – CVA (1)

Consequently, according to Gregory, unilateral cva as a standard formula is 
derived as follows:

Risky Value = Ṽ (t, T)

Where:

Τ: Maximum maturity date.
τ: Default time of the counterparty.

Consider the following scenarios:
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2.1. Counterparty does not default before Τ

In this scenario, an indictor function is defined.

τ( ) ( )>I T V t T,  (2)

Where τ( )>I T  takes the value of 1 if default does not occur before Τ and zero 
otherwise

2.2. Counterparty does default before Τ

According to Gregory’s derivation of cva, we have to consider the payoff in 
two terms:

A. Cashflows paid up to the default time, which is basically the first scenario 
up to τ instead of Τ

τ τ( ) ( )≤I T V t,  (3)

B. Default payoff
 In this case, if Mark to Market, from now denoted as MtM, of the trade at 

default time τ( )V T,   is positive then the institution will receive a recovery 
fraction (R) of the open derivatives positions, whereas if negative they will 
still have to pay the risk free amount. The latter will be affected by dva later 
on, which is an institution’s own credit risk.

τ τ τ( )( ) ( ) ( )≤ +
+ −I T RV T V T,  ,  (4)

Where x – = min (x, 0) and y + = max (y, 0)

Now, merging both payoffs, we have the following expression for the value of 
the position under risk-neutral measure:

 τ( ) ( ) ( ) ( ) ( )= − − ≤
+V t T V t T E R I T V t T,  ,  1 ,  Q (5)
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As the expression above expresses the value of the portfolio adjusted by the 
counterparty risk, cva by itself will be described as:

τ τ( ) ( ) ( ) ( )= − ≤
+CVA t T E R I T V T,  1 ,  Q (6)

Please note that according to the expression above, cva counts only for the 
positive MtM positions by the expression τ( )+V T,   as these are the ones an 
institution is exposed to if counterparty default occurs before T.

Even though the equation seems to have little to no complexity, the fact is 
that it is not linear due to the incorporation of risk mitigants such as netting 
and collateral.

As a result, Gregory defines cva in a probability approach as follows:

∑( ) ( ) ( ) ( )≈ −
−

−CVA DF t EE t PD t t1 Rec ,  i
i

m

i i i
1

1 (7)

Where:

• (1 – Rec) Loss given default or lgd. In the event of a counterparty default, 
some percentage of the amount due would be recovered, thus this expression 
defines the amount that would be lost.

• (DF) Discount Factor. This is the risk-free factor that will be used to dis-
count future payoffs.

• (EE) Expected exposure. This is the expected value to be lost in the event 
that the counterparty defaults.

• (PD) Default probability. This expression describes the marginal default 
probability in the interval ti – 1 and ti.

Even though Gregory and Brigo have stated a formula for cva as presented 
above, the cva model may suffer variations depending on the type of product 
that is being priced. For instance Hui Li presented a cva approach for Credit 
Default Swaps in 2008 (Li, 2008).

In order to achieve the cva calculation for these types of trades, Hui Li makes 
some assumptions. First, counterparty risk will be unilateral on the protection 
of the seller, this due to the fact that most of the cds negative basis trades were 
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traded at low spreads that lead to a negative MtM. Second, credit quality of the 
counterparty is independent of the Collateral performance. Finally, Li assumes 
a recovery rate R as constant in the level of 40%, which according to Basel iii, 
is the market practice (Li, 2008; Reynolds et al., 2013).

As a result of the assumptions mentioned above, the cva for cds can be 
expressed as:

∫( ) ( ) ( )= −CVA R EE t dPD t1 0,  
T

0
(8)

Where EE (t) expresses the risk-neutral discounted expected exposure, and 
PD (0, t) expresses the risk-neutral probability of counterparty default between 
time 0 and t.

Now Hui Li defines another assumption. Considering that EE (t) is the sum 
of risk-neutral discounted expected payoffs at or after t under a cds contract, 
one could define an expression – dEE (t) as the risk-neutral discounted values 
of expected cash flow at t. Then cva is re-expressed as:

∫

∫

∫

∫

∫

( )

( )( )

( )( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

= − − −

= − − −

= − −

= − − −

= − − − −

CVA R EE t PD t R PD t dEE t

CVA R EE t PD t R PD t dEE t

R PD t dEE t

R PS t dEE t

CVA R EE R PS t dEE t

1 0,  1 0,  

1 0,  1 0,  

        1 0,  

        1 1 0,  

1 0 1 0,  

T T

T T

T

T

T

0 0

0 0

0

0

0

|

|

(9)

∫ ( )( )( ) ( ) ( ) ( ) ( )= − − − −CVA R EE R PS t dEE t1 0 1 0,  
T

0
(10)

According to Hui Li, this can be done when considering PS (0, t) as the survival 
probability between time 0 and t. And EE (0) is the current value of the abs cdo 
insurance portfolio with no counterparty risk (Li, 2008).

In his paper, Hui Li separates even further the expressions of cva detailed 
above and comes up with a semi analytical expression of cva for cds on super 
senior abs cdo. Even though, these types of products are not traded in Colombia, 
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it is important to understand that some variations of the cva formula depicted 
earlier need to be done in order to simplify calculations according to the speci-
ficities of each product.

Another important work on cva calculation was done by Lu Dongsheng and 
Juan Frank, in which they presented a more efficient cva calculation method-
ology based on a backward framework under risk-neutral probabilities (Lu & 
Juan, 2010).

The model presented by Lu and Juan is the following:

CVA = EQ 1− R( )Dt min Threshold,  Vt( )|  A<Hd

⎡
⎣

⎤
⎦ (11)

Where A is the trade value, Hd is the default threshold, R represents the recovery 
rate, D represents the discount factor and Q expresses risk-neutral measure. In 
this context, the cva value is the result of the integration of all future exposures 
discounted to time 0. In that case, the implied formulation is only concerned 
about those scenarios in which the counterparty defaults.

In line with the model presented above, the process would involve the fol-
lowing steps:

a) Scenario generation.
b) Valuation under market generated scenarios.
c) Collect cva by aggregating defaulted exposures.

Lu Dongsheng and Juan Frank suggest that the model presented has several ad-
vantages compared to other cva approaches. Firstly, the model is efficient and 
flexible in terms of computational requirements. This is achieved by eliminat-
ing redundant calculations and focussing on incremental cva. Secondly, due to 
the large number of simulations, the model is more accurate and less impacted 
by noise. Finally, the model is highly customizable and can be adjusted and 
calibrated easily (Lu & Juan, 2010).

Moreover, in 2012 John Hull and Alan White suggested a model in which 
wrong way risk was incorporated into the cva calculation using Monte Carlo 
Simulation. According to their paper, Wrong Way risk, which is the positive 
correlation between an institution’s exposure and its counterparty’s default 
probability, can be incorporated into cva assuming a relationship between the 
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hazard rate and the value of variables generated as part of Monte Carlo simula-
tions (Hull & White, 2012).

Hull and White define cva as follows:

∫( ) ( ) ( )= −
=

CVA R q t v t dt1
t

T

0
(12)

where T is the longest derivative maturity date, v (t) is the derivative’s payoff 
at time t, R is the Recovery rate, and q (t) is the probability density function to 
counterparty default under risk-neutral measure.

Now, using Monte Carlo simulation, the integral in the equation above can 
be approximated as:

∑( )= −
=

CVA R q v1 i i
i

n

1
(13)

where qi is the default probability between times ti – 1 and ti, this variable is usu-
ally calculated from credit spreads, cds are a good measure for counterparty’s 
default probabilities, but, when trading with real sector counterparties, similar 
company credit spreads might be useful.

Now, in order to incorporate wrong-way risk into cva calculation, Hull 
and White consider the introduction of a model in which q (t) depends on 
the evolution of the variables simulated through Monte Carlo up until time t. 
Consequently, a hazard rate h that measures the probability of a default occur-
rence within any short period of time Δt conditional on no earlier default is 
introduced into the model.

As h depends on the behavior of different variables x, h can be expressed 
as follows:

h (t) = f (x (t)), (14)

where f is a function that has the property that  h (t) ≥ 0 for all possible values 
of x (t).

Hull and White argue that the model proposed can be used to incorporate 
credit triggers, this means that a relationship between the counterparty’s credit 
spreads and its credit rating can be introduced into the cva model.
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Finally, in order to illustrate the nature of wrong-way risk using the function 
above, Hull and White consider the following approach:

h t( ) = exp a t( )+bw t( )⎡⎣ ⎤⎦ (15)

where b is a constant parameter that measures the amount of wrong-way risk 
in the model, a (t) is a function of time and w is the value of a derivative’s port-
folio (Hull & White, 2012).

Another interesting approach of cva is the one presented by Sidita Zhabjaku 
in 2013. In it, Sidita introduces a model for cva using defaultable options that 
aims at relating the company’s instantaneous rate of default to its stock price. 
The author argues that this approach is valid since it relies on the fact that there 
is always a plunge in the stock before any default event. In order to accomplish 
this, Sidita presets cva as the difference between a non-defaultable option and 
a defaultable option price (Zhabjaku, 2013).

Sidita describes a preliminary concept of cva previously presented by Mats 
Kjaer in 2011 as follows:

Ѷ(t)=V(t)-ψ(t) (16)

where V (t) is the value of a risk-free portfolio, Ѷ(t) is the value of a portfolio 
in which default can occur and ψ(t) represents cva (Kjaer, 2011).

Reexpressing the equation above we have unilateral cva as:

CVA = 1− RC( ) E V + u( )
N t( )
N u( )

|Ft
⎡

⎣
⎢

⎤

⎦
⎥ fτ u( )

t

T
∫ du (17)

Where E V + u( )
N t( )
N u( )

|Ft
⎡

⎣
⎢

⎤

⎦
⎥ is the expected exposure as V+(u) = max (V(u), 0) and 

fτ (u) is the density of default time τ.
As default time is exponentially distributed, then τ can be simulated through 

the inverse cumulative distribution of an exponential as follows:

P (τ ≤ T) = 1– e–λτ (18)
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As a result, Sidita expresses an analytical form of defaultable option with 
exponential default arrival times driven by λ, and finally merged with Black-
Scholes formula for call options:

∫∫ τ τ τ τ τ( ) ( ) ( ) ( )+λ λτ =

∞
R C P d C T P dBS BS T

T

0
(19)

Where Pλ (τ) = λe–λτ and CBS (T) is the Black-Scholes formula for a call option 
under a risk-neutral measure. Then, Sidita continues elaborating on the incor-
poration of the stock price within the defaultable option and resulting in two 
methods later tested (Zhabjaku, 2013).

3. Models to be discussed

It is time to present the models to be discussed in this paper. The first model 
to be described is the discounted cash flow approach model for cva, which 
is usually implemented by Colombian financial institutions due to its lack of 
computational needs and low implementations costs.

3.1. Model 1: cva Discounted cash flows approach

Some financial institutions in Colombia have decided to apply simpler models 
for unilateral cva than the theoretical and more robust models in order to meet 
the regulator requirements. However, as explained earlier, because of the lack 
of robust systems and calculation engines as well as budgetary constraints, the 
current models applied by these institutions may lack some important compo-
nents from theoretical models. The following model is also described as the 
Discounted cash flow approach and is used by most financial institutions in 
Colombia.

As the current value of any derivative is calculated by discounting future 
cash flows using risk-free interest rates, the discounted cash flow approach for 
unilateral cva will involve an additional credit spread to the risk-free rate in 
order to represent counterparty credit risk.

Discounted cash flow approach can be presented as:

CVA = FVRf – FVCredit adjusted (20)
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where:

FVRf : is the risk free fair value calculated by any conventional pricing model.
FVCredit adjusted: is the fair value calculated by using credit spreads on top of the 
risk free rates for discounting future cash flows.

3.1.1. fx Options cva Discounted Cash Flows Approach

In the case of Fx Options, as pricing is done through the Black-Scholes model 
the cva adjustment is developed from the apt (Arbitrage Pricing Theory) 
model which is based on Expected Loss (el). As a result, cva for Fx Options 
is defined as:

CVA = BS * (1 – ELa) (21)

where:

BS: is the Fx Option price as an outcome of the Black Scholes model.
ELa: is the Expected Loss adjustment and is based on default probability and 
Loss Given Default (lgd).

ELa = (DP) * LGD (22)

Where loss given default (lgd) is assumed to be 60% of the outstanding amount 
according to Basel iii. Default probabilities are calculated according to an in-
ternal credit risk model and for thesis purposes it is assumed as given.

As it is possible to evidence, the current model does not account for expected 
exposure and it requires the construction and modelling of reliable credit spread 
curves for each and every single counterparty. Montecarlo simulation is also 
not part of the process, as it requires a high computational processing to run 
over a spreadsheet. However, the model is simple and easy to implement, also 
it does not require sophisticated pricing engines and can also be applied on a 
transactional level. For the reasons explained above, the model is one of the 
best choices for financial institutions around the world and meets the minimum 
requirements for cva accountability.
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3.2. Model 2: Unilateral cva Theoretical model

The Theoretical cva model as discussed earlier is relevant as it encompasses 
important variables such as Potential Future Exposure and Expected Exposure. 
In addition, this cva approach integrates over time in order to take into account 
the distribution of ee and pd, and when applying Montecarlo simulations, it is 
possible to determine the cost of cva for n scenarios.

As mentioned before and based on Gregory’s simple cva approach explained 
we have two cases to consider starting from the Risky Value Ṽ (t, T); Counterparty 
does not default before T described in formula (2) and Counterparty does de-
fault before T.

As the second case consists of two terms, Cashflows paid up to the default 
time formula (3) and Default payoff formula (4), it is necessary to put all pay-
offs together as follows:

!V t,  T( ) = EQ I τ >T( )V t,  T( )+ I τ ≤T( )V t,  τ( )+ I τ ≤T( ) RV τ ,  T( )+ +V τ ,  T( )−( )⎡
⎣

⎤
⎦

!V t,  T( ) = EQ I τ >T( )V t,  T( )+ I τ ≤T( )V t,  τ( )+ I τ ≤T( ) RV τ ,  T( )+ +V τ ,  T( )−( )⎡
⎣

⎤
⎦

(23)

Remember that V (τ, Τ)+ = max (V (τ, T), 0) and using x– = x – x+ and rearranging 
we have:

!V t,  T( ) = EQ I τ >T( )V t,  T( )+ I τ ≤T( )V τ ,  T( )+ I τ ≤T( ) R−1( )V τ ,  T( )+V τ ,  T( )( )⎡
⎣

⎤
⎦

!V t,  T( ) = EQ I τ >T( )V t,  T( )+ I τ ≤T( )V τ ,  T( )+ I τ ≤T( ) R−1( )V τ ,  T( )+V τ ,  T( )( )⎡
⎣

⎤
⎦

Now, considering that V (t, τ) + V (τ, Τ) = V (t, Τ) we have:

!V t,  T( ) = EQ I τ >T( )V t,  T( )+ I τ ≤T( )V t,  T( )+ I τ ≤T( ) R−1( )V τ ,  T( )+( )⎡
⎣

⎤
⎦

Finally, since I (τ > Τ) V (t, Τ) + I (τ ≤ T) V (t, Τ) = V (t, Τ) and rearranging, we 
have the following equation for the Risky Value:
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!V t,  T( ) =V t,  T( )−EQ 1− R( ) I τ ≤T( )V τ ,  T( )+⎡
⎣

⎤
⎦ (24)

Where:

CVA t,  T( ) = EQ 1− R( ) I τ ≤T( )V τ ,  T( )+⎡
⎣

⎤
⎦

Now, as it is very important to determine the exposure at the default date τ we 
need to integrate over all times before the final maturity date:

CVA t,  T( ) = 1− R( )EQ B t,  τ( )V τ ,  T( )+ dF t,  τ( )
t

T
∫⎡⎣⎢

⎤
⎦⎥

Where:

B (t, τ): is the risk-free discount factor
dF (t, τ): is the instantaneous default probability as F (t, τ) is the cumulative 
default probability for the counterparty.
As the portfolio’s positive values are represented by the Expected Exposure 
(ee): we have EE τ ,  T( ) = EQ V τ ,  T( )+⎡

⎣
⎤
⎦.

Finally, we can rewrite the expression as follows:

CVA t,  T( ) = 1− R( ) EE τ ,  T( )B t,  τ( )dF t,  τ( )
t

T
∫⎡⎣⎢

⎤
⎦⎥ (25)

For the purpose of this thesis, the term EE τ ,  T( ) = EQ V τ ,  T( )+⎡
⎣

⎤
⎦ will be cal-

culated using formula (28) which is the value for a European Call Fx Option.
Please also note that (1 – R) represents Loss Given Default, which for the 

purpose of model 2, is the constant given. It is worth mentioning that accord-
ing to article 161 from the Capital Requirements Regulation, institutions may 
use an lgd of 45% for senior exposures without eligible collateral or for senior 
purchased corporate receivables exposures where an institution is not able to 
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calculate PDs or the estimates do not meet the requirements set out in section 
6 from the same document (Council, 2013).

3.2.1. Options Theoretical cva Approach

When dealing with long Option positions a simplification for cva can be done 
since the Expected value can never be negative. According to Gregory, cva for 
a long Option position can be expressed as follows:

CVAoption t,  T( ) = 1− R( )EQ I τ ≤T( )⎡⎣ ⎤⎦EQ B t,  τ( )Voption τ ,  T( )⎡⎣ ⎤⎦

( ) ( ) ( ) ( )= −CVA t T R F t T V t T,  1 ,  ,  option option (26)

Where Voption is the premium value usually paid upfront.

3.3. Model 3: Unilateral cva Theoretical model  
with non-constant lgd

The third model discussed in this thesis paper is closely related to the unilateral 
cva theoretical approach explained in model 2, but with a non-constant lgd. 
Although, theoretical cva models when applied properly are much more reli-
able and accurate compared to the simpler cva version from model 1, it is also 
important to consider that lgd should not be taken lightly. lgd’s impact on cva 
calculation could not be underestimated, therefore it is important to consider a 
model in which lgd is not a constant given.

Stefano Bonini and Giuliani Caivano in their paper Econometric approach 
for Basel iii Loss Given Default Estimation: from discount rate to final multi-
variate model state a simple lgd workout model that can be easily merged in 
our theoretical cva model.

The Workout lgd calculation model is based on the economic notion of in-
cluding all relevant costs that are implied in the recovery process represented 
by R. This model covers all guidelines related to discounted cash flows from 
the Committee of European banking supervisors (Bonini & Caivano, 2017).

According to Bonini and Caivano the Workout lgd can be expressed as 
follows:
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∑ ∑∑δ δ δ
( )= − = −

− −
LGD R

A Cost
EAD

1 1
Reci i

T
i i

T
i i

T

(27)

Where:

Reci: represents the recovery flow at date i.
Ai: is the increase flow at date i.
Costi: represents the cost of litigation, collection procedures, legal expenses 
at date i.
i: is default date.
EAD: Exposure at default.
δi
T: is the discount rate of each flow at date i.

4. Model construction and assumptions

The models were set up in matlab and run for a long single Call fx Option 
with the following parameters:

Notional usd 1.00

Days to maturity 90 – 1800

Spot price $ 3,100.00

Strike price $ 3,200.00

Market implied volatily 10.50%

Recovery rate 40%

usd and Cop Interes rates Precia

4.1. Model set up

Models 2 and 3 are based on Monte Carlo simulation built in matlab code di-
vided into 5 stages: I recommend enumerating the stages as a list.

4.1.1. Market data loading and construction

The first step is to upload market data related to foreign and local interest  
rates. The information loaded to the models is built by Precia and is described 
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in their pricing paper where usdcop fx derivatives must be discounted using 
usdibr implied foreign interest rates and copibr implied local interest rates. 
ibr is the local interbank funding rate.

The files used are:

• Swapcc_ibr_Nodos (Local interest rate curve).
• Tasas_usdibr_Nodos (Foreign interest rate curve).

Both of the files are built in a term structure instead of daily based rate curves.
These curves are loaded to the models and saved in rb (local) and ra (for-

eign) vectors which later are referred for each step calculation using linear 
interpolation.

In addition, a term structured set of Hazard rates h is loaded by each coun-
terparty and saved in a vector for survival and default curves construction. This 
curve must be provided as an input, and for the purpose of this thesis paper, we 
will assume it given as follows:

Term h Rate

0 0

360 4.94%

720 6.67%

1080 8.54%

1440 10.60%

1800 12.95%

Other market data values (Spot rate, Market implied vol, days to maturity) are 
set by the user according to market values of the desired date.

4.1.2. Spot rate matrix

In order to run Monte Carlo simulation, a set of Spot prices is needed which 
later will be used as the starting point for forward rates calculation at each step. 
This matrix is called S01 and is built following a Geometric Brownian motion. 
All Matrixes are built as follows:
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Values for S01 matrix are calculated using the following expression:

S01i, j = S 0( )i−1, j e
rb1−ra1( )∗ 1

365
−
1
2
∗σ 2∗

1
365

+σ ∗
1
365

∗dwt
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Where:

rb1 and ra1: are the local and foreign interest rates for 1 day term.
S (0)i – 1, j: is the previous step usdcop spot rate.
σ: is the usdcop volatility.
dwt: is the stochastic term.

As a consequence, the matrix is the result of a spot projected one step at a time 
to the maturity of the contract.

4.1.3. Fwd rate matrix

The forward rate matrix (st) is calculated based on the spot rate matrix pre-
viously explained. In this matrix, each value is computed starting from the 
corresponding spot rate at each step and then calculating a forward rate to the 
maturity of the contract using the following expression:

STi, j = S 0( )i, j e
rbd−i−rad−i( )∗d−i365

−
1
2
∗σ 2 d−i

365
+σ ∗

d−i
365

∗dwt
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
|i :d
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Where:

d: is days to maturity and d – 1 is the remaining days to maturity as each step 
moves forward.
S (0)i,j: is the spot rate at step i for each scenario.

−
rbd i

 and 
−

rad i
: are the local and foreign interest rates for term d – 1 calculated from 

each curve structures by linear interpolation.

4.1.4. Payoff matrix

The payoff matrix (Payoffm2) is the result of taking each forward rate and cal-
culating the discounted fx Call Option payoff at each step using the following 
expression:

Payof fm2i, j =max STi, j −K ,0( )∗ e
−rbd−i( )∗d−i365

Where:

STi, j: is the projected forward rate for the remaing days to maturity at each step.
K: is the agreed stroke Price of the fx Call Option.

4.1.5. ee vector

The Expected Exposure vector (ee) is the result of adding up the positive val-
ues for each step and dividing it by the number of scenarios of the simulation. 
For derivatives different from options, where payoffs can be negative, it is im-
portant to consider only positive values as they represent the exposure from a 
counterparty default and therefore cva calculation is needed. As the purchase 
of an fx Call Option limits the losses to zero by itself, this vector is simply the 
result of the average of the payoff values.

EEi, 1 = mean (Payof fi : nrep)

The ee vector is an ix1 size as shown below:
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4.1.6. Cumulative survival probability curve

The cumulative survival curve (su) is calculated for all steps of the simulation 
using the following expression:

SUi,1 = SUi−1,1 ∗ e
−h( )∗ 1

365

Where:

SU1,1 = 1, since the default probability for a counterparty at day 1 is 0.
h: is the hazard rate, which represents the intensity of default. This value is 
dependent on each counterparty and for the purpose of this thesis is assumed 
a constant given.
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Figure 9: Cumulative survival probability

Su
rv

iv
al

 p
ro

ba
bl

ity
 %

1

0.95

0.9

0.85

0.75

0.65

0 200 400 600 800 1000 1200 1400 1600 1800

0.8

0.7

4.1.7. Cumulative default probability

The cumulative default probability curve (F) is calculated based on the Cumulative 
survival probability, and is given by the following expression:

Fi,1 = 1 – SUi,1

Figure 10: Cumulative default probability
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4.1.8. Marginal default probability

The marginal default probability (mdp) is a vector that represents the marginal 
increase of default probability at each step of the simulation. This calculation 
is crucial to calculate the expected default values. This vector is computed fol-
lowing the expression:

MDPi, 1 = FI, 1 – Fi – 1, 1

Figure 11: Marginal default probability
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5. Results and conclusions

The model was run on different maturity dates for a single fx Call Option fol-
lowing the assumptions described in this document and according to the finan-
cial information shown above.

Both, the fx Spot and fx Forward in the following figures follow a Geometric 
Brownian motion normally distributed over a 90-day term:



O D E O N  N º  1 7
83

odeon, issn: 1794-1113, e-issn: 2346-2140, N° 17, julio-diciembre de 2019, pp. 45-88

Figure 12: Simulations
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Once the scenarios were simulated for the first term date, we proceed to calculate 
the Fx option Value for all 3 models and their respective cva and are displayed 
in the following table 1:
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First of all, it is important to point out that Fx Option prices differ from 
one bs model to the Monte Carlo simulated one. Besides choosing from 1000 
scenarios, there are important differences to consider when taking into account 
that this is a 1usd notional derivative. Figure 8 shows that the mc simulated 
model computes higher prices almost at all terms all the way to 5-year positions.

Figure 13: Fx Option Prices bs vs MonteCarlo
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However, besides the differences in prices pointed out above, Figure 9 shows 
that cva values are very close to all terms when comparing the cva discounted 
Cash flows approach (Model 1) with the cva Theoretical model (Model 2), which 
by definition, considers the Expected Exposure to all ti steps on the simulation 
and the Marginal default Probabilities. Model 2 cva is higher in almost all term 
simulations and could be important when considering different asset classes 
and real market open positions.

On the other hand, Figure 9 also shows that the values for cva 3 which re-
sulted from Model 3, which considers a lgd workout approach are considerably 
higher than 90-day terms and increases to higher levels than the other models 
as the maturity is further in the future.

It is important to point out that both Models 2 and 3 are accountable for 
measures such as pfe and Maximum pfe (mpfe) since these approaches con-
sider scenario simulations. Measures such as pfe and mpfe are very important 
when pricing cva and could become part of key analyses when considering 
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counterparty default events. The following chart shows the Exposure profile 
of Models 2 and 3 for a 1-year term.

Figure 14: cva models comparison
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Figure 15: Exposure profile
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