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Abstract
This paper explores the effect of the frequency of data on the accuracy (mea-
sure by variance) of the maximum likelihood estimator (MLE) of the trend pa-
rameter μ in a jump-diffusion process à la Press (1967). First, we consider the 
case without jumps (i.e., the geometric Brownian motion (GBM)) as a bench-
mark case to show that the frequency of data is irrelevant in this first setting. 
Then, we consider the case with jumps and highlight that things are different 
in this second situation. Specifically, the asymptotic variance of the MLE of 
the trend parameter turns out to be higher compared to the case without jumps. 
Nevertheless, we also prove that when sampling occurs infinitely often (i.e., 
high frequency) it is possible to obtain the same accuracy for the MLE of μ as 
for the GBM, given that for higher frequencies it is easier to “identify” price 
discontinuities (i.e., jumps) for this model. Mathematical proofs are performed 
under the assumption that the MLE of μ is estimated given the other parameters, 
but numerical (Montecarlo) simulations indicate that this is also the case even 
when all parameters are estimated together.

Key words: Lévy process; Poisson process; Maximum likelihood; diffu-
sion; jump-diffusion 

JEL classification: C13, C63.

Resumen
Este artículo explora el efecto que tiene la frecuencia de los datos en la pre-
cisión (medida por la varianza) del estimador de máxima verosimilitud (MLE 
- maximum likelihood estimator) del parámetro de tendencia μ en un proceso 
de difusión con salto a la Press (1967). Para ello, consideramos primero el caso 
sin saltos (es decir, el movimiento Browniano geométrico o GBM - geometric 
Brownian motion) como el modelo referencia, con el que se evidencia que la 
frecuencia de los datos es irrelevante. Acto seguido, consideramos el caso con 
saltos, en donde enfatizamos que las cosas son diferentes. Específicamente, 
observamos que en este caso la varianza asintótica del MLE del parámetro de 
tendencia es más alto que cuando no había saltos. Sin embargo, también ob-
servamos que cuando la frecuencia ocurre lo suficientemente seguido (alta fre-
cuencia), es posible obtener la misma precisión para el MLE de μ que cuando 
se tiene el GBM, dado que para frecuencias más altas es más fácil “identificar” 
discontinuidades (saltos) en el precio para este modelo. Las pruebas matemáti-
cas se llevan a cabo bajo el supuesto de que el MLE de μ se estima dados los 
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demás parámetros, pero las simulaciones numéricas (Monte Carlo) demuestran 
que este es el caso también cuando todos los parámetros se estiman en conjunto.  

Palabras clave: Procesos de Lévy; Proceso de Poisson; máxima verosimili-
tud; difusión; difusión con salto. 

Clasificación JEL: C13, C63.

Introduction 

The estimation of the trend parameter in the classical (geometric) jump-diffusion 
process proposed by Press (1967) is highly relevant in fields of finance such 
as forecasting, portfolio choice and portfolio testing. However, one problem 
arises and that is that discrete observations come at different frequencies (daily, 
weekly, bi-weekly, monthly, bi-monthly, annual, etc.). Therefore, this paper poses 
an essential question, which, despite its importance and apparent simplicity, 
to the best of our knowledge appears to have been missed in the literature: Do 
changes in the frequency of data (given the same window of observation) af-
fect the accuracy to estimate the drift parameter (measure by its variance) in 
this stochastic process? 

The question stated above has already been formulated in the case of the 
diffusion parameter  (see Ait-Sahalia, 2004). This issue is understandable as the 
diffusion term is not only essential for portfolio allocation and performance, 
but also for risk management and option pricing. Furthermore, in the case of 
jump-diffusion processes, some of the insights suggest that the jump component 
can affect the estimation of the volatility parameter for different frequencies. 
However, as indicated before, the drift parameter is also relevant and, conse-
quently, it is important to determine if the frequency of the data also affects 
the accuracy of its estimation.

Traditionally, parameters of classical stochastic processes like the GBM (i.e., 
Press, 1967) model without jumps) are estimated by using the maximum (log)
likelihood method (Phillips & Yu, 2009). In this case, the method is straightfor-
ward since in a discrete time setting the transitional density of each logarithmic 
return is Gaussian, which enables closed form solutions for both the drift and 
diffusion estimators. From here, it is possible to estimate the variance of the 
estimators and check whether the frequency of the data has any influence on 
them. As we will see in this first case, sampling is irrelevant and does not im-
prove the accuracy of the MLE of the drift parameter. 
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However, for jump diffusion processes like the one suggested by Press (1967), 
the direct application of the maximum (log)likelihood method is cumbersome. 
As noted by Press (1967), Beckers (1981), Ball & Torous (1985), Kiefer (1978), 
and Honoré (1998), the first order conditions obtained in this second case are 
highly non-linear, contain an infinite sum that should be truncated somehow, and 
require the imposition of limits to some parameters to bound the (log)likelihood 
function. All these requirements make it highly complex to obtain analytical 
results for the estimators compared with the GBM case1. In that sense, if the 
method is going to be used, it is generally applied using numerical techniques 
to choose the values that maximize the likelihood function2. On the other hand, 
analytical results can be obtained using other methods such as the cumulant 
matching method (Press, 1967 or Beckers, 1981 are the classical references), 
or the efficient method of moments (Chernov et al. 2003 is the classical refer-
ence) which, however, possess some problems, and do not necessarily present 
the efficient properties of maximum likelihood estimators.   

Because of the difficulty in obtaining analytical estimators in the jump-
diffusion case using the maximum likelihood method, and the need to use that 
method to compare the results with the GBM benchmark case, we will use a 
different approach to the one exposed above for the GBM for testing the influ-
ence of frequency. First, under the assumption that the other parameters are 
known, and given that for this type of stochastic process the logarithmic returns 
are independent and stationary, it is possible to define the Fisher information  
of the trend parameter for one observation (as the expected value of the square of  
the derivative of the log-likelihood function with respect to the trend param-
eter) and then scale it to obtain the Fisher information for the entire sample 
(Härdle & Simar, 2019). From that result and following some of the ideas of 

1  For the GBM, there is one restriction that should be imposed, which is that the diffu-
sion parameter should be strictly positive. However, the analytical result shows that this is not 
required as the MLE is obtained by using the population standard deviation of logarithmic 
returns which, by definition, is non-negative (see section 1). Instead, for the jump-diffusion 
process not only these kinds of requirements should be imposed on the diffusion term, the 
rate of the Poisson process, and the scale factor of the log-normal IID process, but also upper 
bounds for them as indicated by Honoré (1998). For Monte Carlo issues in section 3 we impose 
those requirements.  
2  Nowadays, with programming languages such as R or Python, it is possible to implement 
complex optimization processes as the one that maximizes the joint (log)likelihood function 
of the jump-diffusion process.  
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Ait-Sahalia (2004), we can establish one upper and one lower bound that the 
Fisher information should fulfil in this case and conclude that the presence of 
jumps increases the variance of the estimator compared with the GBM case, but 
also that for high frequency data the effect is negligible. These results are also 
complemented by Monte Carlo simulations which show that the same happens 
when all the parameters are estimated together. 

Despite filling a theoretical gap in the literature, our paper is also relevant 
for practitioners in finance. In fact, it is well known that logarithmic returns are 
non-Gaussian (Cont, 2001) so there is an increasing need to use other stochas-
tic processes such as Lévy processes to take financial decisions. However, if 
the trend parameter is estimated with relatively low frequency data, our paper 
shows that it will be biased by the presence of jumps, affecting any financial 
decision taken using that information. In that regard, this article also motivates 
the need for financial agents to provide information with higher frequency, to 
guarantee for decisions to be taken with less biases. 

To the best of our knowledge, the closest study in spirit to this paper is the doc- 
toral thesis of Mai (2012) later published by Mai (2014) who studied the es-
timation of the speed of reversion parameter in the drift term of both a zero 
Ornstein-Uhlenbeck (OU) process and a Lévy-driven zero OU process with 
continuous-time data. He derived the asymptotic variance in both cases and 
concluded that the presence of jumps increases the variance of the estimator. 
Furthermore, he indicated that when we approximate the process from dis-
crete observations it is simpler to detect large jumps and, therefore, for higher 
frequency data the additional variance of the jump vanishes asymptotically. 

Despite the similarities with the approach of this paper, this article dif-
fers in some relevant respects. First, Mai (2012, 2014) obtained the variance 
directly from time-continuous data observations and later adapted it to the 
case of discrete observations, while in this study the variance of the estimator 
is obtained directly from discrete observations by using the method adapted 
from Ait-Sahalia (2004). This difference is important since, in practice, 
stochastic models should be estimated from discrete observations directly. 
Second, Mai (2012, 2014) focused on the zero Ornstein-Uhlenbeck (OU) 
process for general Lévy processes, both with finite and infinite activity, 
while we specialize on the GBM expanded by a specific Lévy process with 
finite activity (Poisson process). Third, the emphasis of Mai (2012, 2014) was 
on the speed of reversion of the process and not on the long-term expected 
value (given that he worked with a zero OU process) which somehow differs 
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from our approach as we focus precisely on the expected value of logarith-
mic returns3. 

The rest of this paper is structured as follows; Section 1 introduces the sto-
chastic setting and the benchmark case of the GBM; Section 2 depicts the case 
of the jump-diffusion process; and Section 3 presents some results using Monte 
Carlo simulations to show empirically both conclusions obtained in the previous 
sections, and then the Conclusion follows.  Proofs of all results are collected in 
the “Appendix”.  

1. Benchmark Case: The Geometric Brownian Motion

Let us fix as a primitive an index set 

1. Benchmark Case: The Geometric Brownian Motion 

Let us fix as a primitive an index set T ≡ [0, 𝑇𝑇], with 𝑇𝑇 > 0 but 𝑇𝑇 < ∞, such that 𝑡𝑡 ∈ T 

can be interpreted as “time”. Uncertainty will be modelled by considering as a primitive a 

complete probability space (Ω, ℱ, ℙ). Let there be a one-dimensional 𝔽𝔽-adapted Wiener 

process denoted by 𝑊𝑊 ≔ {𝑊𝑊𝑡𝑡, ℱ𝑡𝑡; 𝑡𝑡 ∈ T } that takes values on ℝ, with 𝔽𝔽 ≔ {ℱ𝑡𝑡; 𝑡𝑡 ∈ T } being 

the standard filtration, which is the one generated by the stochastic process and 

augmented by all null sets of Ω, the subsets of Ω (events) of zero probability. By simplicity 

we will assume that ℱ0 is almost trivial and that ℱ𝑇𝑇 = ℱ.  

Under the stochastic environment exposed above, let us consider an asset (the stock) 

whose spot price will be modelled as an 𝔽𝔽-adapted process 𝑆𝑆 ≔ {𝑆𝑆𝑡𝑡, ℱ𝑡𝑡; 𝑡𝑡 ∈ 𝒯𝒯} that follows 

a GBM:   

𝑑𝑑𝑆𝑆𝑡𝑡
𝑆𝑆𝑡𝑡

= 𝜇𝜇𝑑𝑑𝑡𝑡 + 𝜎𝜎𝑑𝑑𝑊𝑊𝑡𝑡,                                                              (1) 

with 𝜇𝜇 ∈ ℝ as the drift and 𝜎𝜎 > 0 as the diffusion parameters respectively.   

By applying Itô’s lemma, we can see that the natural logarithmic of the asset 𝑋𝑋 = 𝐿𝐿𝐿𝐿(𝑆𝑆) 

follows an arithmetic Brownian motion given by: 

𝑑𝑑𝑋𝑋𝑡𝑡 = (𝜇𝜇 − 𝜎𝜎2

2 ) 𝑑𝑑𝑡𝑡 + 𝜎𝜎𝑑𝑑𝑊𝑊𝑡𝑡.                                                   (2) 

The explicit solution of equation (2) is obtained by integrating between 𝑠𝑠 and 𝑡𝑡, where 0 ≤

𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇 to obtain:  

𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠 = (𝜇𝜇 − 𝜎𝜎2

2 ) (𝑡𝑡 − 𝑠𝑠) + 𝜎𝜎(𝑊𝑊𝑡𝑡 − 𝑊𝑊𝑠𝑠),   ∀  0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇.                  (3) 

The logarithmic return 𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠 has expected value, variance and Gaussian density given 

by:  

𝐸𝐸(𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠) = (𝜇𝜇 − 𝜎𝜎2

2 ) (𝑡𝑡 − 𝑠𝑠),   ∀  0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇.                           (4) 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠) = 𝜎𝜎2(𝑡𝑡 − 𝑠𝑠),   ∀  0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇.                               (5) 
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𝑑𝑑𝑋𝑋𝑡𝑡 = (𝜇𝜇 − 𝜎𝜎2

2 ) 𝑑𝑑𝑡𝑡 + 𝜎𝜎𝑑𝑑𝑊𝑊𝑡𝑡.                                                   (2) 

The explicit solution of equation (2) is obtained by integrating between 𝑠𝑠 and 𝑡𝑡, where 0 ≤

𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇 to obtain:  

𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠 = (𝜇𝜇 − 𝜎𝜎2

2 ) (𝑡𝑡 − 𝑠𝑠) + 𝜎𝜎(𝑊𝑊𝑡𝑡 − 𝑊𝑊𝑠𝑠),   ∀  0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇.                  (3) 

The logarithmic return 𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠 has expected value, variance and Gaussian density given 

by:  

𝐸𝐸(𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠) = (𝜇𝜇 − 𝜎𝜎2

2 ) (𝑡𝑡 − 𝑠𝑠),   ∀  0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇.                           (4) 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠) = 𝜎𝜎2(𝑡𝑡 − 𝑠𝑠),   ∀  0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇.                               (5) 

3 Gloter, Loukianova, and Mai (2016) extend Mai (2012, 2014) results for a Lévy-driven 
OU with non-zero expected value and a Lévy-driven Cox, Ingersoll, and Ross (CIR) process. 
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The explicit solution of equation (2) is obtained by integrating between s 
and t, where 0 ≤ s < t ≤ T to obtain: 

1. Benchmark Case: The Geometric Brownian Motion 

Let us fix as a primitive an index set T ≡ [0, 𝑇𝑇], with 𝑇𝑇 > 0 but 𝑇𝑇 < ∞, such that 𝑡𝑡 ∈ T 

can be interpreted as “time”. Uncertainty will be modelled by considering as a primitive a 

complete probability space (Ω, ℱ, ℙ). Let there be a one-dimensional 𝔽𝔽-adapted Wiener 

process denoted by 𝑊𝑊 ≔ {𝑊𝑊𝑡𝑡, ℱ𝑡𝑡; 𝑡𝑡 ∈ T } that takes values on ℝ, with 𝔽𝔽 ≔ {ℱ𝑡𝑡; 𝑡𝑡 ∈ T } being 

the standard filtration, which is the one generated by the stochastic process and 

augmented by all null sets of Ω, the subsets of Ω (events) of zero probability. By simplicity 

we will assume that ℱ0 is almost trivial and that ℱ𝑇𝑇 = ℱ.  

Under the stochastic environment exposed above, let us consider an asset (the stock) 

whose spot price will be modelled as an 𝔽𝔽-adapted process 𝑆𝑆 ≔ {𝑆𝑆𝑡𝑡, ℱ𝑡𝑡; 𝑡𝑡 ∈ 𝒯𝒯} that follows 

a GBM:   

𝑑𝑑𝑆𝑆𝑡𝑡
𝑆𝑆𝑡𝑡

= 𝜇𝜇𝑑𝑑𝑡𝑡 + 𝜎𝜎𝑑𝑑𝑊𝑊𝑡𝑡,                                                              (1) 

with 𝜇𝜇 ∈ ℝ as the drift and 𝜎𝜎 > 0 as the diffusion parameters respectively.   

By applying Itô’s lemma, we can see that the natural logarithmic of the asset 𝑋𝑋 = 𝐿𝐿𝐿𝐿(𝑆𝑆) 

follows an arithmetic Brownian motion given by: 

𝑑𝑑𝑋𝑋𝑡𝑡 = (𝜇𝜇 − 𝜎𝜎2

2 ) 𝑑𝑑𝑡𝑡 + 𝜎𝜎𝑑𝑑𝑊𝑊𝑡𝑡.                                                   (2) 

The explicit solution of equation (2) is obtained by integrating between 𝑠𝑠 and 𝑡𝑡, where 0 ≤

𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇 to obtain:  

𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠 = (𝜇𝜇 − 𝜎𝜎2

2 ) (𝑡𝑡 − 𝑠𝑠) + 𝜎𝜎(𝑊𝑊𝑡𝑡 − 𝑊𝑊𝑠𝑠),   ∀  0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇.                  (3) 

The logarithmic return 𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠 has expected value, variance and Gaussian density given 

by:  

𝐸𝐸(𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠) = (𝜇𝜇 − 𝜎𝜎2

2 ) (𝑡𝑡 − 𝑠𝑠),   ∀  0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇.                           (4) 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠) = 𝜎𝜎2(𝑡𝑡 − 𝑠𝑠),   ∀  0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇.                               (5) 

The logarithmic return Xt – Xs has expected value, variance and Gaussian den-
sity given by: 

1. Benchmark Case: The Geometric Brownian Motion 

Let us fix as a primitive an index set T ≡ [0, 𝑇𝑇], with 𝑇𝑇 > 0 but 𝑇𝑇 < ∞, such that 𝑡𝑡 ∈ T 

can be interpreted as “time”. Uncertainty will be modelled by considering as a primitive a 

complete probability space (Ω, ℱ, ℙ). Let there be a one-dimensional 𝔽𝔽-adapted Wiener 

process denoted by 𝑊𝑊 ≔ {𝑊𝑊𝑡𝑡, ℱ𝑡𝑡; 𝑡𝑡 ∈ T } that takes values on ℝ, with 𝔽𝔽 ≔ {ℱ𝑡𝑡; 𝑡𝑡 ∈ T } being 

the standard filtration, which is the one generated by the stochastic process and 

augmented by all null sets of Ω, the subsets of Ω (events) of zero probability. By simplicity 

we will assume that ℱ0 is almost trivial and that ℱ𝑇𝑇 = ℱ.  

Under the stochastic environment exposed above, let us consider an asset (the stock) 

whose spot price will be modelled as an 𝔽𝔽-adapted process 𝑆𝑆 ≔ {𝑆𝑆𝑡𝑡, ℱ𝑡𝑡; 𝑡𝑡 ∈ 𝒯𝒯} that follows 

a GBM:   

𝑑𝑑𝑆𝑆𝑡𝑡
𝑆𝑆𝑡𝑡

= 𝜇𝜇𝑑𝑑𝑡𝑡 + 𝜎𝜎𝑑𝑑𝑊𝑊𝑡𝑡,                                                              (1) 

with 𝜇𝜇 ∈ ℝ as the drift and 𝜎𝜎 > 0 as the diffusion parameters respectively.   

By applying Itô’s lemma, we can see that the natural logarithmic of the asset 𝑋𝑋 = 𝐿𝐿𝐿𝐿(𝑆𝑆) 

follows an arithmetic Brownian motion given by: 

𝑑𝑑𝑋𝑋𝑡𝑡 = (𝜇𝜇 − 𝜎𝜎2

2 ) 𝑑𝑑𝑡𝑡 + 𝜎𝜎𝑑𝑑𝑊𝑊𝑡𝑡.                                                   (2) 

The explicit solution of equation (2) is obtained by integrating between 𝑠𝑠 and 𝑡𝑡, where 0 ≤

𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇 to obtain:  

𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠 = (𝜇𝜇 − 𝜎𝜎2

2 ) (𝑡𝑡 − 𝑠𝑠) + 𝜎𝜎(𝑊𝑊𝑡𝑡 − 𝑊𝑊𝑠𝑠),   ∀  0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇.                  (3) 

The logarithmic return 𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠 has expected value, variance and Gaussian density given 

by:  

𝐸𝐸(𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠) = (𝜇𝜇 − 𝜎𝜎2

2 ) (𝑡𝑡 − 𝑠𝑠),   ∀  0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇.                           (4) 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠) = 𝜎𝜎2(𝑡𝑡 − 𝑠𝑠),   ∀  0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇.                               (5) 

𝑓𝑓(𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠; 𝜇𝜇, 𝜎𝜎) =
1

√2𝜋𝜋𝜎𝜎2(𝑡𝑡 − 𝑠𝑠)
𝑒𝑒
−12
{ 
 
  [𝑋𝑋𝑡𝑡−𝑋𝑋𝑠𝑠−(𝜇𝜇−

𝜎𝜎2
2 )(𝑡𝑡−𝑠𝑠)]

2

𝜎𝜎2(𝑡𝑡−𝑠𝑠)
} 
 
  

, ∀  0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇.      (6) 

 

We proceed to discretize the process as follows. We will assume that the stock’s prices 

are observed at times 0 = 𝑡𝑡0, 𝑡𝑡1, … , 𝑡𝑡𝒩𝒩 = 𝑇𝑇, and we will approximate 𝑡𝑡 − 𝑠𝑠 in equation (3) 

as a fix interval change in time given by Δ𝑡𝑡 = 𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1 that expresses the frequency of data, 

such that Δ𝑡𝑡 = 𝑡𝑡𝒩𝒩−𝑡𝑡0
𝒩𝒩 = 𝑇𝑇

𝒩𝒩. Therefore, denoting Δ𝑋𝑋𝑖𝑖 = 𝑋𝑋𝑡𝑡𝑖𝑖 − 𝑋𝑋𝑡𝑡𝑖𝑖−1 and Δ𝑊𝑊𝑖𝑖 = 𝑊𝑊𝑡𝑡𝑖𝑖 − 𝑊𝑊𝑡𝑡𝑖𝑖−1 we 

can discretize equation (3) in the following way:  

Δ𝑋𝑋𝑖𝑖 = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝜎𝜎Δ𝑊𝑊𝑖𝑖,   ∀ 𝑖𝑖 = 1,2, … ,𝒩𝒩.                                  (7) 

 

The expression Δ𝑊𝑊𝑖𝑖 which has an expected value 𝐸𝐸(Δ𝑊𝑊𝑖𝑖) = 0 and variance 𝑉𝑉𝑉𝑉𝑉𝑉(Δ𝑊𝑊𝑖𝑖) =

𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1 = Δ𝑡𝑡 can be approximated by √Δ𝑡𝑡𝜀𝜀𝑖𝑖 where 𝜀𝜀𝑖𝑖 is an IID process that follows a 

Gaussian distribution with expected value 𝐸𝐸(𝜀𝜀𝑖𝑖) = 0 and variance 𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀𝑖𝑖) = 1, such that: 

𝐸𝐸(𝜎𝜎Δ𝑊𝑊𝑖𝑖) = 𝐸𝐸(𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖) = 0, ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩,                                    (8) 

𝑉𝑉𝑉𝑉𝑉𝑉(𝜎𝜎Δ𝑊𝑊𝑖𝑖) = 𝑉𝑉𝑉𝑉𝑉𝑉(𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖) = 𝜎𝜎2Δ𝑡𝑡, ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩.                      (9) 

Therefore, equation (7) can be re-expressed as:  

Δ𝑋𝑋𝑖𝑖 = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖,   ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩.                              (10) 

The process {Δ𝑋𝑋𝑖𝑖}𝑖𝑖=1𝒩𝒩  is an IID Gaussian process, such that any logarithmic return has 

an expected value, variance and density given by: 

𝐸𝐸(Δ𝑋𝑋𝑖𝑖) = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡,   ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩,                             (11) 

𝑉𝑉𝑉𝑉𝑉𝑉(Δ𝑋𝑋𝑖𝑖) = 𝜎𝜎2Δ𝑡𝑡,   ∀  𝑖𝑖 = 1,2, … ,𝒩𝒩,                                   (12) 

We proceed to discretize the process as follows. We will assume that the stock’s 
prices are observed at times 

𝑓𝑓(𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠; 𝜇𝜇, 𝜎𝜎) =
1

√2𝜋𝜋𝜎𝜎2(𝑡𝑡 − 𝑠𝑠)
𝑒𝑒
−12
{ 
 
  [𝑋𝑋𝑡𝑡−𝑋𝑋𝑠𝑠−(𝜇𝜇−

𝜎𝜎2
2 )(𝑡𝑡−𝑠𝑠)]

2

𝜎𝜎2(𝑡𝑡−𝑠𝑠)
} 
 
  

, ∀  0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇.      (6) 

 

We proceed to discretize the process as follows. We will assume that the stock’s prices 

are observed at times 0 = 𝑡𝑡0, 𝑡𝑡1, … , 𝑡𝑡𝒩𝒩 = 𝑇𝑇, and we will approximate 𝑡𝑡 − 𝑠𝑠 in equation (3) 

as a fix interval change in time given by Δ𝑡𝑡 = 𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1 that expresses the frequency of data, 

such that Δ𝑡𝑡 = 𝑡𝑡𝒩𝒩−𝑡𝑡0
𝒩𝒩 = 𝑇𝑇

𝒩𝒩. Therefore, denoting Δ𝑋𝑋𝑖𝑖 = 𝑋𝑋𝑡𝑡𝑖𝑖 − 𝑋𝑋𝑡𝑡𝑖𝑖−1 and Δ𝑊𝑊𝑖𝑖 = 𝑊𝑊𝑡𝑡𝑖𝑖 − 𝑊𝑊𝑡𝑡𝑖𝑖−1 we 

can discretize equation (3) in the following way:  

Δ𝑋𝑋𝑖𝑖 = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝜎𝜎Δ𝑊𝑊𝑖𝑖,   ∀ 𝑖𝑖 = 1,2, … ,𝒩𝒩.                                  (7) 

 

The expression Δ𝑊𝑊𝑖𝑖 which has an expected value 𝐸𝐸(Δ𝑊𝑊𝑖𝑖) = 0 and variance 𝑉𝑉𝑉𝑉𝑉𝑉(Δ𝑊𝑊𝑖𝑖) =

𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1 = Δ𝑡𝑡 can be approximated by √Δ𝑡𝑡𝜀𝜀𝑖𝑖 where 𝜀𝜀𝑖𝑖 is an IID process that follows a 

Gaussian distribution with expected value 𝐸𝐸(𝜀𝜀𝑖𝑖) = 0 and variance 𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀𝑖𝑖) = 1, such that: 

𝐸𝐸(𝜎𝜎Δ𝑊𝑊𝑖𝑖) = 𝐸𝐸(𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖) = 0, ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩,                                    (8) 

𝑉𝑉𝑉𝑉𝑉𝑉(𝜎𝜎Δ𝑊𝑊𝑖𝑖) = 𝑉𝑉𝑉𝑉𝑉𝑉(𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖) = 𝜎𝜎2Δ𝑡𝑡, ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩.                      (9) 

Therefore, equation (7) can be re-expressed as:  

Δ𝑋𝑋𝑖𝑖 = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖,   ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩.                              (10) 

The process {Δ𝑋𝑋𝑖𝑖}𝑖𝑖=1𝒩𝒩  is an IID Gaussian process, such that any logarithmic return has 

an expected value, variance and density given by: 

𝐸𝐸(Δ𝑋𝑋𝑖𝑖) = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡,   ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩,                             (11) 

𝑉𝑉𝑉𝑉𝑉𝑉(Δ𝑋𝑋𝑖𝑖) = 𝜎𝜎2Δ𝑡𝑡,   ∀  𝑖𝑖 = 1,2, … ,𝒩𝒩,                                   (12) 

, and we will approximate 

𝑓𝑓(𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠; 𝜇𝜇, 𝜎𝜎) =
1

√2𝜋𝜋𝜎𝜎2(𝑡𝑡 − 𝑠𝑠)
𝑒𝑒
−12
{ 
 
  [𝑋𝑋𝑡𝑡−𝑋𝑋𝑠𝑠−(𝜇𝜇−

𝜎𝜎2
2 )(𝑡𝑡−𝑠𝑠)]

2

𝜎𝜎2(𝑡𝑡−𝑠𝑠)
} 
 
  

, ∀  0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇.      (6) 

 

We proceed to discretize the process as follows. We will assume that the stock’s prices 

are observed at times 0 = 𝑡𝑡0, 𝑡𝑡1, … , 𝑡𝑡𝒩𝒩 = 𝑇𝑇, and we will approximate 𝑡𝑡 − 𝑠𝑠 in equation (3) 

as a fix interval change in time given by Δ𝑡𝑡 = 𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1 that expresses the frequency of data, 

such that Δ𝑡𝑡 = 𝑡𝑡𝒩𝒩−𝑡𝑡0
𝒩𝒩 = 𝑇𝑇

𝒩𝒩. Therefore, denoting Δ𝑋𝑋𝑖𝑖 = 𝑋𝑋𝑡𝑡𝑖𝑖 − 𝑋𝑋𝑡𝑡𝑖𝑖−1 and Δ𝑊𝑊𝑖𝑖 = 𝑊𝑊𝑡𝑡𝑖𝑖 − 𝑊𝑊𝑡𝑡𝑖𝑖−1 we 

can discretize equation (3) in the following way:  

Δ𝑋𝑋𝑖𝑖 = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝜎𝜎Δ𝑊𝑊𝑖𝑖,   ∀ 𝑖𝑖 = 1,2, … ,𝒩𝒩.                                  (7) 

 

The expression Δ𝑊𝑊𝑖𝑖 which has an expected value 𝐸𝐸(Δ𝑊𝑊𝑖𝑖) = 0 and variance 𝑉𝑉𝑉𝑉𝑉𝑉(Δ𝑊𝑊𝑖𝑖) =

𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1 = Δ𝑡𝑡 can be approximated by √Δ𝑡𝑡𝜀𝜀𝑖𝑖 where 𝜀𝜀𝑖𝑖 is an IID process that follows a 

Gaussian distribution with expected value 𝐸𝐸(𝜀𝜀𝑖𝑖) = 0 and variance 𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀𝑖𝑖) = 1, such that: 

𝐸𝐸(𝜎𝜎Δ𝑊𝑊𝑖𝑖) = 𝐸𝐸(𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖) = 0, ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩,                                    (8) 

𝑉𝑉𝑉𝑉𝑉𝑉(𝜎𝜎Δ𝑊𝑊𝑖𝑖) = 𝑉𝑉𝑉𝑉𝑉𝑉(𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖) = 𝜎𝜎2Δ𝑡𝑡, ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩.                      (9) 

Therefore, equation (7) can be re-expressed as:  

Δ𝑋𝑋𝑖𝑖 = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖,   ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩.                              (10) 

The process {Δ𝑋𝑋𝑖𝑖}𝑖𝑖=1𝒩𝒩  is an IID Gaussian process, such that any logarithmic return has 

an expected value, variance and density given by: 

𝐸𝐸(Δ𝑋𝑋𝑖𝑖) = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡,   ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩,                             (11) 

𝑉𝑉𝑉𝑉𝑉𝑉(Δ𝑋𝑋𝑖𝑖) = 𝜎𝜎2Δ𝑡𝑡,   ∀  𝑖𝑖 = 1,2, … ,𝒩𝒩,                                   (12) 

 
in equation (3) as a fix interval change in time given by 

𝑓𝑓(𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠; 𝜇𝜇, 𝜎𝜎) =
1

√2𝜋𝜋𝜎𝜎2(𝑡𝑡 − 𝑠𝑠)
𝑒𝑒
−12
{ 
 
  [𝑋𝑋𝑡𝑡−𝑋𝑋𝑠𝑠−(𝜇𝜇−

𝜎𝜎2
2 )(𝑡𝑡−𝑠𝑠)]

2

𝜎𝜎2(𝑡𝑡−𝑠𝑠)
} 
 
  

, ∀  0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇.      (6) 

 

We proceed to discretize the process as follows. We will assume that the stock’s prices 

are observed at times 0 = 𝑡𝑡0, 𝑡𝑡1, … , 𝑡𝑡𝒩𝒩 = 𝑇𝑇, and we will approximate 𝑡𝑡 − 𝑠𝑠 in equation (3) 

as a fix interval change in time given by Δ𝑡𝑡 = 𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1 that expresses the frequency of data, 

such that Δ𝑡𝑡 = 𝑡𝑡𝒩𝒩−𝑡𝑡0
𝒩𝒩 = 𝑇𝑇

𝒩𝒩. Therefore, denoting Δ𝑋𝑋𝑖𝑖 = 𝑋𝑋𝑡𝑡𝑖𝑖 − 𝑋𝑋𝑡𝑡𝑖𝑖−1 and Δ𝑊𝑊𝑖𝑖 = 𝑊𝑊𝑡𝑡𝑖𝑖 − 𝑊𝑊𝑡𝑡𝑖𝑖−1 we 

can discretize equation (3) in the following way:  

Δ𝑋𝑋𝑖𝑖 = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝜎𝜎Δ𝑊𝑊𝑖𝑖,   ∀ 𝑖𝑖 = 1,2, … ,𝒩𝒩.                                  (7) 

 

The expression Δ𝑊𝑊𝑖𝑖 which has an expected value 𝐸𝐸(Δ𝑊𝑊𝑖𝑖) = 0 and variance 𝑉𝑉𝑉𝑉𝑉𝑉(Δ𝑊𝑊𝑖𝑖) =

𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1 = Δ𝑡𝑡 can be approximated by √Δ𝑡𝑡𝜀𝜀𝑖𝑖 where 𝜀𝜀𝑖𝑖 is an IID process that follows a 

Gaussian distribution with expected value 𝐸𝐸(𝜀𝜀𝑖𝑖) = 0 and variance 𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀𝑖𝑖) = 1, such that: 

𝐸𝐸(𝜎𝜎Δ𝑊𝑊𝑖𝑖) = 𝐸𝐸(𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖) = 0, ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩,                                    (8) 

𝑉𝑉𝑉𝑉𝑉𝑉(𝜎𝜎Δ𝑊𝑊𝑖𝑖) = 𝑉𝑉𝑉𝑉𝑉𝑉(𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖) = 𝜎𝜎2Δ𝑡𝑡, ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩.                      (9) 

Therefore, equation (7) can be re-expressed as:  

Δ𝑋𝑋𝑖𝑖 = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖,   ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩.                              (10) 

The process {Δ𝑋𝑋𝑖𝑖}𝑖𝑖=1𝒩𝒩  is an IID Gaussian process, such that any logarithmic return has 

an expected value, variance and density given by: 

𝐸𝐸(Δ𝑋𝑋𝑖𝑖) = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡,   ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩,                             (11) 

𝑉𝑉𝑉𝑉𝑉𝑉(Δ𝑋𝑋𝑖𝑖) = 𝜎𝜎2Δ𝑡𝑡,   ∀  𝑖𝑖 = 1,2, … ,𝒩𝒩,                                   (12) 

 that ex-
presses the frequency of data, such that 

𝑓𝑓(𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠; 𝜇𝜇, 𝜎𝜎) =
1

√2𝜋𝜋𝜎𝜎2(𝑡𝑡 − 𝑠𝑠)
𝑒𝑒
−12
{ 
 
  [𝑋𝑋𝑡𝑡−𝑋𝑋𝑠𝑠−(𝜇𝜇−

𝜎𝜎2
2 )(𝑡𝑡−𝑠𝑠)]

2

𝜎𝜎2(𝑡𝑡−𝑠𝑠)
} 
 
  

, ∀  0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇.      (6) 

 

We proceed to discretize the process as follows. We will assume that the stock’s prices 

are observed at times 0 = 𝑡𝑡0, 𝑡𝑡1, … , 𝑡𝑡𝒩𝒩 = 𝑇𝑇, and we will approximate 𝑡𝑡 − 𝑠𝑠 in equation (3) 

as a fix interval change in time given by Δ𝑡𝑡 = 𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1 that expresses the frequency of data, 

such that Δ𝑡𝑡 = 𝑡𝑡𝒩𝒩−𝑡𝑡0
𝒩𝒩 = 𝑇𝑇

𝒩𝒩. Therefore, denoting Δ𝑋𝑋𝑖𝑖 = 𝑋𝑋𝑡𝑡𝑖𝑖 − 𝑋𝑋𝑡𝑡𝑖𝑖−1 and Δ𝑊𝑊𝑖𝑖 = 𝑊𝑊𝑡𝑡𝑖𝑖 − 𝑊𝑊𝑡𝑡𝑖𝑖−1 we 

can discretize equation (3) in the following way:  

Δ𝑋𝑋𝑖𝑖 = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝜎𝜎Δ𝑊𝑊𝑖𝑖,   ∀ 𝑖𝑖 = 1,2, … ,𝒩𝒩.                                  (7) 

 

The expression Δ𝑊𝑊𝑖𝑖 which has an expected value 𝐸𝐸(Δ𝑊𝑊𝑖𝑖) = 0 and variance 𝑉𝑉𝑉𝑉𝑉𝑉(Δ𝑊𝑊𝑖𝑖) =

𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1 = Δ𝑡𝑡 can be approximated by √Δ𝑡𝑡𝜀𝜀𝑖𝑖 where 𝜀𝜀𝑖𝑖 is an IID process that follows a 

Gaussian distribution with expected value 𝐸𝐸(𝜀𝜀𝑖𝑖) = 0 and variance 𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀𝑖𝑖) = 1, such that: 

𝐸𝐸(𝜎𝜎Δ𝑊𝑊𝑖𝑖) = 𝐸𝐸(𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖) = 0, ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩,                                    (8) 

𝑉𝑉𝑉𝑉𝑉𝑉(𝜎𝜎Δ𝑊𝑊𝑖𝑖) = 𝑉𝑉𝑉𝑉𝑉𝑉(𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖) = 𝜎𝜎2Δ𝑡𝑡, ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩.                      (9) 

Therefore, equation (7) can be re-expressed as:  

Δ𝑋𝑋𝑖𝑖 = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖,   ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩.                              (10) 

The process {Δ𝑋𝑋𝑖𝑖}𝑖𝑖=1𝒩𝒩  is an IID Gaussian process, such that any logarithmic return has 

an expected value, variance and density given by: 

𝐸𝐸(Δ𝑋𝑋𝑖𝑖) = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡,   ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩,                             (11) 

𝑉𝑉𝑉𝑉𝑉𝑉(Δ𝑋𝑋𝑖𝑖) = 𝜎𝜎2Δ𝑡𝑡,   ∀  𝑖𝑖 = 1,2, … ,𝒩𝒩,                                   (12) 

 Therefore, denoting 

𝑓𝑓(𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠; 𝜇𝜇, 𝜎𝜎) =
1

√2𝜋𝜋𝜎𝜎2(𝑡𝑡 − 𝑠𝑠)
𝑒𝑒
−12
{ 
 
  [𝑋𝑋𝑡𝑡−𝑋𝑋𝑠𝑠−(𝜇𝜇−

𝜎𝜎2
2 )(𝑡𝑡−𝑠𝑠)]

2

𝜎𝜎2(𝑡𝑡−𝑠𝑠)
} 
 
  

, ∀  0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇.      (6) 

 

We proceed to discretize the process as follows. We will assume that the stock’s prices 

are observed at times 0 = 𝑡𝑡0, 𝑡𝑡1, … , 𝑡𝑡𝒩𝒩 = 𝑇𝑇, and we will approximate 𝑡𝑡 − 𝑠𝑠 in equation (3) 

as a fix interval change in time given by Δ𝑡𝑡 = 𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1 that expresses the frequency of data, 

such that Δ𝑡𝑡 = 𝑡𝑡𝒩𝒩−𝑡𝑡0
𝒩𝒩 = 𝑇𝑇

𝒩𝒩. Therefore, denoting Δ𝑋𝑋𝑖𝑖 = 𝑋𝑋𝑡𝑡𝑖𝑖 − 𝑋𝑋𝑡𝑡𝑖𝑖−1 and Δ𝑊𝑊𝑖𝑖 = 𝑊𝑊𝑡𝑡𝑖𝑖 − 𝑊𝑊𝑡𝑡𝑖𝑖−1 we 

can discretize equation (3) in the following way:  

Δ𝑋𝑋𝑖𝑖 = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝜎𝜎Δ𝑊𝑊𝑖𝑖,   ∀ 𝑖𝑖 = 1,2, … ,𝒩𝒩.                                  (7) 

 

The expression Δ𝑊𝑊𝑖𝑖 which has an expected value 𝐸𝐸(Δ𝑊𝑊𝑖𝑖) = 0 and variance 𝑉𝑉𝑉𝑉𝑉𝑉(Δ𝑊𝑊𝑖𝑖) =

𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1 = Δ𝑡𝑡 can be approximated by √Δ𝑡𝑡𝜀𝜀𝑖𝑖 where 𝜀𝜀𝑖𝑖 is an IID process that follows a 

Gaussian distribution with expected value 𝐸𝐸(𝜀𝜀𝑖𝑖) = 0 and variance 𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀𝑖𝑖) = 1, such that: 

𝐸𝐸(𝜎𝜎Δ𝑊𝑊𝑖𝑖) = 𝐸𝐸(𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖) = 0, ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩,                                    (8) 

𝑉𝑉𝑉𝑉𝑉𝑉(𝜎𝜎Δ𝑊𝑊𝑖𝑖) = 𝑉𝑉𝑉𝑉𝑉𝑉(𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖) = 𝜎𝜎2Δ𝑡𝑡, ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩.                      (9) 

Therefore, equation (7) can be re-expressed as:  

Δ𝑋𝑋𝑖𝑖 = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖,   ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩.                              (10) 

The process {Δ𝑋𝑋𝑖𝑖}𝑖𝑖=1𝒩𝒩  is an IID Gaussian process, such that any logarithmic return has 

an expected value, variance and density given by: 

𝐸𝐸(Δ𝑋𝑋𝑖𝑖) = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡,   ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩,                             (11) 

𝑉𝑉𝑉𝑉𝑉𝑉(Δ𝑋𝑋𝑖𝑖) = 𝜎𝜎2Δ𝑡𝑡,   ∀  𝑖𝑖 = 1,2, … ,𝒩𝒩,                                   (12) 

 and 

𝑓𝑓(𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠; 𝜇𝜇, 𝜎𝜎) =
1

√2𝜋𝜋𝜎𝜎2(𝑡𝑡 − 𝑠𝑠)
𝑒𝑒
−12
{ 
 
  [𝑋𝑋𝑡𝑡−𝑋𝑋𝑠𝑠−(𝜇𝜇−

𝜎𝜎2
2 )(𝑡𝑡−𝑠𝑠)]

2

𝜎𝜎2(𝑡𝑡−𝑠𝑠)
} 
 
  

, ∀  0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇.      (6) 

 

We proceed to discretize the process as follows. We will assume that the stock’s prices 

are observed at times 0 = 𝑡𝑡0, 𝑡𝑡1, … , 𝑡𝑡𝒩𝒩 = 𝑇𝑇, and we will approximate 𝑡𝑡 − 𝑠𝑠 in equation (3) 

as a fix interval change in time given by Δ𝑡𝑡 = 𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1 that expresses the frequency of data, 

such that Δ𝑡𝑡 = 𝑡𝑡𝒩𝒩−𝑡𝑡0
𝒩𝒩 = 𝑇𝑇

𝒩𝒩. Therefore, denoting Δ𝑋𝑋𝑖𝑖 = 𝑋𝑋𝑡𝑡𝑖𝑖 − 𝑋𝑋𝑡𝑡𝑖𝑖−1 and Δ𝑊𝑊𝑖𝑖 = 𝑊𝑊𝑡𝑡𝑖𝑖 − 𝑊𝑊𝑡𝑡𝑖𝑖−1 we 

can discretize equation (3) in the following way:  

Δ𝑋𝑋𝑖𝑖 = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝜎𝜎Δ𝑊𝑊𝑖𝑖,   ∀ 𝑖𝑖 = 1,2, … ,𝒩𝒩.                                  (7) 

 

The expression Δ𝑊𝑊𝑖𝑖 which has an expected value 𝐸𝐸(Δ𝑊𝑊𝑖𝑖) = 0 and variance 𝑉𝑉𝑉𝑉𝑉𝑉(Δ𝑊𝑊𝑖𝑖) =

𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1 = Δ𝑡𝑡 can be approximated by √Δ𝑡𝑡𝜀𝜀𝑖𝑖 where 𝜀𝜀𝑖𝑖 is an IID process that follows a 

Gaussian distribution with expected value 𝐸𝐸(𝜀𝜀𝑖𝑖) = 0 and variance 𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀𝑖𝑖) = 1, such that: 

𝐸𝐸(𝜎𝜎Δ𝑊𝑊𝑖𝑖) = 𝐸𝐸(𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖) = 0, ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩,                                    (8) 

𝑉𝑉𝑉𝑉𝑉𝑉(𝜎𝜎Δ𝑊𝑊𝑖𝑖) = 𝑉𝑉𝑉𝑉𝑉𝑉(𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖) = 𝜎𝜎2Δ𝑡𝑡, ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩.                      (9) 

Therefore, equation (7) can be re-expressed as:  

Δ𝑋𝑋𝑖𝑖 = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖,   ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩.                              (10) 

The process {Δ𝑋𝑋𝑖𝑖}𝑖𝑖=1𝒩𝒩  is an IID Gaussian process, such that any logarithmic return has 

an expected value, variance and density given by: 

𝐸𝐸(Δ𝑋𝑋𝑖𝑖) = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡,   ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩,                             (11) 

𝑉𝑉𝑉𝑉𝑉𝑉(Δ𝑋𝑋𝑖𝑖) = 𝜎𝜎2Δ𝑡𝑡,   ∀  𝑖𝑖 = 1,2, … ,𝒩𝒩,                                   (12) 

 we can discretize equation (3) in the 
following way: 

𝑓𝑓(𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠; 𝜇𝜇, 𝜎𝜎) =
1

√2𝜋𝜋𝜎𝜎2(𝑡𝑡 − 𝑠𝑠)
𝑒𝑒
−12
{ 
 
  [𝑋𝑋𝑡𝑡−𝑋𝑋𝑠𝑠−(𝜇𝜇−

𝜎𝜎2
2 )(𝑡𝑡−𝑠𝑠)]

2

𝜎𝜎2(𝑡𝑡−𝑠𝑠)
} 
 
  

, ∀  0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇.      (6) 

 

We proceed to discretize the process as follows. We will assume that the stock’s prices 

are observed at times 0 = 𝑡𝑡0, 𝑡𝑡1, … , 𝑡𝑡𝒩𝒩 = 𝑇𝑇, and we will approximate 𝑡𝑡 − 𝑠𝑠 in equation (3) 

as a fix interval change in time given by Δ𝑡𝑡 = 𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1 that expresses the frequency of data, 

such that Δ𝑡𝑡 = 𝑡𝑡𝒩𝒩−𝑡𝑡0
𝒩𝒩 = 𝑇𝑇

𝒩𝒩. Therefore, denoting Δ𝑋𝑋𝑖𝑖 = 𝑋𝑋𝑡𝑡𝑖𝑖 − 𝑋𝑋𝑡𝑡𝑖𝑖−1 and Δ𝑊𝑊𝑖𝑖 = 𝑊𝑊𝑡𝑡𝑖𝑖 − 𝑊𝑊𝑡𝑡𝑖𝑖−1 we 

can discretize equation (3) in the following way:  

Δ𝑋𝑋𝑖𝑖 = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝜎𝜎Δ𝑊𝑊𝑖𝑖,   ∀ 𝑖𝑖 = 1,2, … ,𝒩𝒩.                                  (7) 

 

The expression Δ𝑊𝑊𝑖𝑖 which has an expected value 𝐸𝐸(Δ𝑊𝑊𝑖𝑖) = 0 and variance 𝑉𝑉𝑉𝑉𝑉𝑉(Δ𝑊𝑊𝑖𝑖) =

𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1 = Δ𝑡𝑡 can be approximated by √Δ𝑡𝑡𝜀𝜀𝑖𝑖 where 𝜀𝜀𝑖𝑖 is an IID process that follows a 

Gaussian distribution with expected value 𝐸𝐸(𝜀𝜀𝑖𝑖) = 0 and variance 𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀𝑖𝑖) = 1, such that: 

𝐸𝐸(𝜎𝜎Δ𝑊𝑊𝑖𝑖) = 𝐸𝐸(𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖) = 0, ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩,                                    (8) 

𝑉𝑉𝑉𝑉𝑉𝑉(𝜎𝜎Δ𝑊𝑊𝑖𝑖) = 𝑉𝑉𝑉𝑉𝑉𝑉(𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖) = 𝜎𝜎2Δ𝑡𝑡, ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩.                      (9) 

Therefore, equation (7) can be re-expressed as:  

Δ𝑋𝑋𝑖𝑖 = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖,   ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩.                              (10) 

The process {Δ𝑋𝑋𝑖𝑖}𝑖𝑖=1𝒩𝒩  is an IID Gaussian process, such that any logarithmic return has 

an expected value, variance and density given by: 

𝐸𝐸(Δ𝑋𝑋𝑖𝑖) = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡,   ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩,                             (11) 

𝑉𝑉𝑉𝑉𝑉𝑉(Δ𝑋𝑋𝑖𝑖) = 𝜎𝜎2Δ𝑡𝑡,   ∀  𝑖𝑖 = 1,2, … ,𝒩𝒩,                                   (12) 

The expression 

𝑓𝑓(𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠; 𝜇𝜇, 𝜎𝜎) =
1

√2𝜋𝜋𝜎𝜎2(𝑡𝑡 − 𝑠𝑠)
𝑒𝑒
−12
{ 
 
  [𝑋𝑋𝑡𝑡−𝑋𝑋𝑠𝑠−(𝜇𝜇−

𝜎𝜎2
2 )(𝑡𝑡−𝑠𝑠)]

2

𝜎𝜎2(𝑡𝑡−𝑠𝑠)
} 
 
  

, ∀  0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇.      (6) 

 

We proceed to discretize the process as follows. We will assume that the stock’s prices 

are observed at times 0 = 𝑡𝑡0, 𝑡𝑡1, … , 𝑡𝑡𝒩𝒩 = 𝑇𝑇, and we will approximate 𝑡𝑡 − 𝑠𝑠 in equation (3) 

as a fix interval change in time given by Δ𝑡𝑡 = 𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1 that expresses the frequency of data, 

such that Δ𝑡𝑡 = 𝑡𝑡𝒩𝒩−𝑡𝑡0
𝒩𝒩 = 𝑇𝑇

𝒩𝒩. Therefore, denoting Δ𝑋𝑋𝑖𝑖 = 𝑋𝑋𝑡𝑡𝑖𝑖 − 𝑋𝑋𝑡𝑡𝑖𝑖−1 and Δ𝑊𝑊𝑖𝑖 = 𝑊𝑊𝑡𝑡𝑖𝑖 − 𝑊𝑊𝑡𝑡𝑖𝑖−1 we 

can discretize equation (3) in the following way:  

Δ𝑋𝑋𝑖𝑖 = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝜎𝜎Δ𝑊𝑊𝑖𝑖,   ∀ 𝑖𝑖 = 1,2, … ,𝒩𝒩.                                  (7) 

 

The expression Δ𝑊𝑊𝑖𝑖 which has an expected value 𝐸𝐸(Δ𝑊𝑊𝑖𝑖) = 0 and variance 𝑉𝑉𝑉𝑉𝑉𝑉(Δ𝑊𝑊𝑖𝑖) =

𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1 = Δ𝑡𝑡 can be approximated by √Δ𝑡𝑡𝜀𝜀𝑖𝑖 where 𝜀𝜀𝑖𝑖 is an IID process that follows a 

Gaussian distribution with expected value 𝐸𝐸(𝜀𝜀𝑖𝑖) = 0 and variance 𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀𝑖𝑖) = 1, such that: 

𝐸𝐸(𝜎𝜎Δ𝑊𝑊𝑖𝑖) = 𝐸𝐸(𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖) = 0, ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩,                                    (8) 

𝑉𝑉𝑉𝑉𝑉𝑉(𝜎𝜎Δ𝑊𝑊𝑖𝑖) = 𝑉𝑉𝑉𝑉𝑉𝑉(𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖) = 𝜎𝜎2Δ𝑡𝑡, ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩.                      (9) 

Therefore, equation (7) can be re-expressed as:  

Δ𝑋𝑋𝑖𝑖 = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖,   ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩.                              (10) 

The process {Δ𝑋𝑋𝑖𝑖}𝑖𝑖=1𝒩𝒩  is an IID Gaussian process, such that any logarithmic return has 

an expected value, variance and density given by: 

𝐸𝐸(Δ𝑋𝑋𝑖𝑖) = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡,   ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩,                             (11) 

𝑉𝑉𝑉𝑉𝑉𝑉(Δ𝑋𝑋𝑖𝑖) = 𝜎𝜎2Δ𝑡𝑡,   ∀  𝑖𝑖 = 1,2, … ,𝒩𝒩,                                   (12) 

 which has an expected value 

𝑓𝑓(𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠; 𝜇𝜇, 𝜎𝜎) =
1

√2𝜋𝜋𝜎𝜎2(𝑡𝑡 − 𝑠𝑠)
𝑒𝑒
−12
{ 
 
  [𝑋𝑋𝑡𝑡−𝑋𝑋𝑠𝑠−(𝜇𝜇−

𝜎𝜎2
2 )(𝑡𝑡−𝑠𝑠)]

2

𝜎𝜎2(𝑡𝑡−𝑠𝑠)
} 
 
  

, ∀  0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇.      (6) 

 

We proceed to discretize the process as follows. We will assume that the stock’s prices 

are observed at times 0 = 𝑡𝑡0, 𝑡𝑡1, … , 𝑡𝑡𝒩𝒩 = 𝑇𝑇, and we will approximate 𝑡𝑡 − 𝑠𝑠 in equation (3) 

as a fix interval change in time given by Δ𝑡𝑡 = 𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1 that expresses the frequency of data, 

such that Δ𝑡𝑡 = 𝑡𝑡𝒩𝒩−𝑡𝑡0
𝒩𝒩 = 𝑇𝑇

𝒩𝒩. Therefore, denoting Δ𝑋𝑋𝑖𝑖 = 𝑋𝑋𝑡𝑡𝑖𝑖 − 𝑋𝑋𝑡𝑡𝑖𝑖−1 and Δ𝑊𝑊𝑖𝑖 = 𝑊𝑊𝑡𝑡𝑖𝑖 − 𝑊𝑊𝑡𝑡𝑖𝑖−1 we 

can discretize equation (3) in the following way:  

Δ𝑋𝑋𝑖𝑖 = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝜎𝜎Δ𝑊𝑊𝑖𝑖,   ∀ 𝑖𝑖 = 1,2, … ,𝒩𝒩.                                  (7) 

 

The expression Δ𝑊𝑊𝑖𝑖 which has an expected value 𝐸𝐸(Δ𝑊𝑊𝑖𝑖) = 0 and variance 𝑉𝑉𝑉𝑉𝑉𝑉(Δ𝑊𝑊𝑖𝑖) =

𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1 = Δ𝑡𝑡 can be approximated by √Δ𝑡𝑡𝜀𝜀𝑖𝑖 where 𝜀𝜀𝑖𝑖 is an IID process that follows a 

Gaussian distribution with expected value 𝐸𝐸(𝜀𝜀𝑖𝑖) = 0 and variance 𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀𝑖𝑖) = 1, such that: 

𝐸𝐸(𝜎𝜎Δ𝑊𝑊𝑖𝑖) = 𝐸𝐸(𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖) = 0, ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩,                                    (8) 

𝑉𝑉𝑉𝑉𝑉𝑉(𝜎𝜎Δ𝑊𝑊𝑖𝑖) = 𝑉𝑉𝑉𝑉𝑉𝑉(𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖) = 𝜎𝜎2Δ𝑡𝑡, ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩.                      (9) 

Therefore, equation (7) can be re-expressed as:  

Δ𝑋𝑋𝑖𝑖 = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖,   ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩.                              (10) 

The process {Δ𝑋𝑋𝑖𝑖}𝑖𝑖=1𝒩𝒩  is an IID Gaussian process, such that any logarithmic return has 

an expected value, variance and density given by: 

𝐸𝐸(Δ𝑋𝑋𝑖𝑖) = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡,   ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩,                             (11) 

𝑉𝑉𝑉𝑉𝑉𝑉(Δ𝑋𝑋𝑖𝑖) = 𝜎𝜎2Δ𝑡𝑡,   ∀  𝑖𝑖 = 1,2, … ,𝒩𝒩,                                   (12) 

 and variance 

𝑓𝑓(𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠; 𝜇𝜇, 𝜎𝜎) =
1

√2𝜋𝜋𝜎𝜎2(𝑡𝑡 − 𝑠𝑠)
𝑒𝑒
−12
{ 
 
  [𝑋𝑋𝑡𝑡−𝑋𝑋𝑠𝑠−(𝜇𝜇−

𝜎𝜎2
2 )(𝑡𝑡−𝑠𝑠)]

2

𝜎𝜎2(𝑡𝑡−𝑠𝑠)
} 
 
  

, ∀  0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇.      (6) 

 

We proceed to discretize the process as follows. We will assume that the stock’s prices 

are observed at times 0 = 𝑡𝑡0, 𝑡𝑡1, … , 𝑡𝑡𝒩𝒩 = 𝑇𝑇, and we will approximate 𝑡𝑡 − 𝑠𝑠 in equation (3) 

as a fix interval change in time given by Δ𝑡𝑡 = 𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1 that expresses the frequency of data, 

such that Δ𝑡𝑡 = 𝑡𝑡𝒩𝒩−𝑡𝑡0
𝒩𝒩 = 𝑇𝑇

𝒩𝒩. Therefore, denoting Δ𝑋𝑋𝑖𝑖 = 𝑋𝑋𝑡𝑡𝑖𝑖 − 𝑋𝑋𝑡𝑡𝑖𝑖−1 and Δ𝑊𝑊𝑖𝑖 = 𝑊𝑊𝑡𝑡𝑖𝑖 − 𝑊𝑊𝑡𝑡𝑖𝑖−1 we 

can discretize equation (3) in the following way:  

Δ𝑋𝑋𝑖𝑖 = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝜎𝜎Δ𝑊𝑊𝑖𝑖,   ∀ 𝑖𝑖 = 1,2, … ,𝒩𝒩.                                  (7) 

 

The expression Δ𝑊𝑊𝑖𝑖 which has an expected value 𝐸𝐸(Δ𝑊𝑊𝑖𝑖) = 0 and variance 𝑉𝑉𝑉𝑉𝑉𝑉(Δ𝑊𝑊𝑖𝑖) =

𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1 = Δ𝑡𝑡 can be approximated by √Δ𝑡𝑡𝜀𝜀𝑖𝑖 where 𝜀𝜀𝑖𝑖 is an IID process that follows a 

Gaussian distribution with expected value 𝐸𝐸(𝜀𝜀𝑖𝑖) = 0 and variance 𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀𝑖𝑖) = 1, such that: 

𝐸𝐸(𝜎𝜎Δ𝑊𝑊𝑖𝑖) = 𝐸𝐸(𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖) = 0, ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩,                                    (8) 

𝑉𝑉𝑉𝑉𝑉𝑉(𝜎𝜎Δ𝑊𝑊𝑖𝑖) = 𝑉𝑉𝑉𝑉𝑉𝑉(𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖) = 𝜎𝜎2Δ𝑡𝑡, ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩.                      (9) 

Therefore, equation (7) can be re-expressed as:  

Δ𝑋𝑋𝑖𝑖 = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖,   ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩.                              (10) 

The process {Δ𝑋𝑋𝑖𝑖}𝑖𝑖=1𝒩𝒩  is an IID Gaussian process, such that any logarithmic return has 

an expected value, variance and density given by: 

𝐸𝐸(Δ𝑋𝑋𝑖𝑖) = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡,   ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩,                             (11) 

𝑉𝑉𝑉𝑉𝑉𝑉(Δ𝑋𝑋𝑖𝑖) = 𝜎𝜎2Δ𝑡𝑡,   ∀  𝑖𝑖 = 1,2, … ,𝒩𝒩,                                   (12) 

 

𝑓𝑓(𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠; 𝜇𝜇, 𝜎𝜎) =
1

√2𝜋𝜋𝜎𝜎2(𝑡𝑡 − 𝑠𝑠)
𝑒𝑒
−12
{ 
 
  [𝑋𝑋𝑡𝑡−𝑋𝑋𝑠𝑠−(𝜇𝜇−

𝜎𝜎2
2 )(𝑡𝑡−𝑠𝑠)]

2

𝜎𝜎2(𝑡𝑡−𝑠𝑠)
} 
 
  

, ∀  0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇.      (6) 

 

We proceed to discretize the process as follows. We will assume that the stock’s prices 

are observed at times 0 = 𝑡𝑡0, 𝑡𝑡1, … , 𝑡𝑡𝒩𝒩 = 𝑇𝑇, and we will approximate 𝑡𝑡 − 𝑠𝑠 in equation (3) 

as a fix interval change in time given by Δ𝑡𝑡 = 𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1 that expresses the frequency of data, 

such that Δ𝑡𝑡 = 𝑡𝑡𝒩𝒩−𝑡𝑡0
𝒩𝒩 = 𝑇𝑇

𝒩𝒩. Therefore, denoting Δ𝑋𝑋𝑖𝑖 = 𝑋𝑋𝑡𝑡𝑖𝑖 − 𝑋𝑋𝑡𝑡𝑖𝑖−1 and Δ𝑊𝑊𝑖𝑖 = 𝑊𝑊𝑡𝑡𝑖𝑖 − 𝑊𝑊𝑡𝑡𝑖𝑖−1 we 

can discretize equation (3) in the following way:  

Δ𝑋𝑋𝑖𝑖 = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝜎𝜎Δ𝑊𝑊𝑖𝑖,   ∀ 𝑖𝑖 = 1,2, … ,𝒩𝒩.                                  (7) 

 

The expression Δ𝑊𝑊𝑖𝑖 which has an expected value 𝐸𝐸(Δ𝑊𝑊𝑖𝑖) = 0 and variance 𝑉𝑉𝑉𝑉𝑉𝑉(Δ𝑊𝑊𝑖𝑖) =

𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1 = Δ𝑡𝑡 can be approximated by √Δ𝑡𝑡𝜀𝜀𝑖𝑖 where 𝜀𝜀𝑖𝑖 is an IID process that follows a 

Gaussian distribution with expected value 𝐸𝐸(𝜀𝜀𝑖𝑖) = 0 and variance 𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀𝑖𝑖) = 1, such that: 

𝐸𝐸(𝜎𝜎Δ𝑊𝑊𝑖𝑖) = 𝐸𝐸(𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖) = 0, ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩,                                    (8) 

𝑉𝑉𝑉𝑉𝑉𝑉(𝜎𝜎Δ𝑊𝑊𝑖𝑖) = 𝑉𝑉𝑉𝑉𝑉𝑉(𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖) = 𝜎𝜎2Δ𝑡𝑡, ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩.                      (9) 

Therefore, equation (7) can be re-expressed as:  

Δ𝑋𝑋𝑖𝑖 = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖,   ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩.                              (10) 

The process {Δ𝑋𝑋𝑖𝑖}𝑖𝑖=1𝒩𝒩  is an IID Gaussian process, such that any logarithmic return has 

an expected value, variance and density given by: 

𝐸𝐸(Δ𝑋𝑋𝑖𝑖) = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡,   ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩,                             (11) 

𝑉𝑉𝑉𝑉𝑉𝑉(Δ𝑋𝑋𝑖𝑖) = 𝜎𝜎2Δ𝑡𝑡,   ∀  𝑖𝑖 = 1,2, … ,𝒩𝒩,                                   (12) 

can be approximated by 

𝑓𝑓(𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠; 𝜇𝜇, 𝜎𝜎) =
1

√2𝜋𝜋𝜎𝜎2(𝑡𝑡 − 𝑠𝑠)
𝑒𝑒
−12
{ 
 
  [𝑋𝑋𝑡𝑡−𝑋𝑋𝑠𝑠−(𝜇𝜇−

𝜎𝜎2
2 )(𝑡𝑡−𝑠𝑠)]

2

𝜎𝜎2(𝑡𝑡−𝑠𝑠)
} 
 
  

, ∀  0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇.      (6) 

 

We proceed to discretize the process as follows. We will assume that the stock’s prices 

are observed at times 0 = 𝑡𝑡0, 𝑡𝑡1, … , 𝑡𝑡𝒩𝒩 = 𝑇𝑇, and we will approximate 𝑡𝑡 − 𝑠𝑠 in equation (3) 

as a fix interval change in time given by Δ𝑡𝑡 = 𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1 that expresses the frequency of data, 

such that Δ𝑡𝑡 = 𝑡𝑡𝒩𝒩−𝑡𝑡0
𝒩𝒩 = 𝑇𝑇

𝒩𝒩. Therefore, denoting Δ𝑋𝑋𝑖𝑖 = 𝑋𝑋𝑡𝑡𝑖𝑖 − 𝑋𝑋𝑡𝑡𝑖𝑖−1 and Δ𝑊𝑊𝑖𝑖 = 𝑊𝑊𝑡𝑡𝑖𝑖 − 𝑊𝑊𝑡𝑡𝑖𝑖−1 we 

can discretize equation (3) in the following way:  

Δ𝑋𝑋𝑖𝑖 = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝜎𝜎Δ𝑊𝑊𝑖𝑖,   ∀ 𝑖𝑖 = 1,2, … ,𝒩𝒩.                                  (7) 

 

The expression Δ𝑊𝑊𝑖𝑖 which has an expected value 𝐸𝐸(Δ𝑊𝑊𝑖𝑖) = 0 and variance 𝑉𝑉𝑉𝑉𝑉𝑉(Δ𝑊𝑊𝑖𝑖) =

𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1 = Δ𝑡𝑡 can be approximated by √Δ𝑡𝑡𝜀𝜀𝑖𝑖 where 𝜀𝜀𝑖𝑖 is an IID process that follows a 

Gaussian distribution with expected value 𝐸𝐸(𝜀𝜀𝑖𝑖) = 0 and variance 𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀𝑖𝑖) = 1, such that: 

𝐸𝐸(𝜎𝜎Δ𝑊𝑊𝑖𝑖) = 𝐸𝐸(𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖) = 0, ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩,                                    (8) 

𝑉𝑉𝑉𝑉𝑉𝑉(𝜎𝜎Δ𝑊𝑊𝑖𝑖) = 𝑉𝑉𝑉𝑉𝑉𝑉(𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖) = 𝜎𝜎2Δ𝑡𝑡, ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩.                      (9) 

Therefore, equation (7) can be re-expressed as:  

Δ𝑋𝑋𝑖𝑖 = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖,   ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩.                              (10) 

The process {Δ𝑋𝑋𝑖𝑖}𝑖𝑖=1𝒩𝒩  is an IID Gaussian process, such that any logarithmic return has 

an expected value, variance and density given by: 

𝐸𝐸(Δ𝑋𝑋𝑖𝑖) = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡,   ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩,                             (11) 

𝑉𝑉𝑉𝑉𝑉𝑉(Δ𝑋𝑋𝑖𝑖) = 𝜎𝜎2Δ𝑡𝑡,   ∀  𝑖𝑖 = 1,2, … ,𝒩𝒩,                                   (12) 

 where 

𝑓𝑓(𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠; 𝜇𝜇, 𝜎𝜎) =
1

√2𝜋𝜋𝜎𝜎2(𝑡𝑡 − 𝑠𝑠)
𝑒𝑒
−12
{ 
 
  [𝑋𝑋𝑡𝑡−𝑋𝑋𝑠𝑠−(𝜇𝜇−

𝜎𝜎2
2 )(𝑡𝑡−𝑠𝑠)]

2

𝜎𝜎2(𝑡𝑡−𝑠𝑠)
} 
 
  

, ∀  0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇.      (6) 

 

We proceed to discretize the process as follows. We will assume that the stock’s prices 

are observed at times 0 = 𝑡𝑡0, 𝑡𝑡1, … , 𝑡𝑡𝒩𝒩 = 𝑇𝑇, and we will approximate 𝑡𝑡 − 𝑠𝑠 in equation (3) 

as a fix interval change in time given by Δ𝑡𝑡 = 𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1 that expresses the frequency of data, 

such that Δ𝑡𝑡 = 𝑡𝑡𝒩𝒩−𝑡𝑡0
𝒩𝒩 = 𝑇𝑇

𝒩𝒩. Therefore, denoting Δ𝑋𝑋𝑖𝑖 = 𝑋𝑋𝑡𝑡𝑖𝑖 − 𝑋𝑋𝑡𝑡𝑖𝑖−1 and Δ𝑊𝑊𝑖𝑖 = 𝑊𝑊𝑡𝑡𝑖𝑖 − 𝑊𝑊𝑡𝑡𝑖𝑖−1 we 

can discretize equation (3) in the following way:  

Δ𝑋𝑋𝑖𝑖 = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝜎𝜎Δ𝑊𝑊𝑖𝑖,   ∀ 𝑖𝑖 = 1,2, … ,𝒩𝒩.                                  (7) 

 

The expression Δ𝑊𝑊𝑖𝑖 which has an expected value 𝐸𝐸(Δ𝑊𝑊𝑖𝑖) = 0 and variance 𝑉𝑉𝑉𝑉𝑉𝑉(Δ𝑊𝑊𝑖𝑖) =

𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1 = Δ𝑡𝑡 can be approximated by √Δ𝑡𝑡𝜀𝜀𝑖𝑖 where 𝜀𝜀𝑖𝑖 is an IID process that follows a 

Gaussian distribution with expected value 𝐸𝐸(𝜀𝜀𝑖𝑖) = 0 and variance 𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀𝑖𝑖) = 1, such that: 

𝐸𝐸(𝜎𝜎Δ𝑊𝑊𝑖𝑖) = 𝐸𝐸(𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖) = 0, ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩,                                    (8) 

𝑉𝑉𝑉𝑉𝑉𝑉(𝜎𝜎Δ𝑊𝑊𝑖𝑖) = 𝑉𝑉𝑉𝑉𝑉𝑉(𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖) = 𝜎𝜎2Δ𝑡𝑡, ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩.                      (9) 

Therefore, equation (7) can be re-expressed as:  

Δ𝑋𝑋𝑖𝑖 = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖,   ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩.                              (10) 

The process {Δ𝑋𝑋𝑖𝑖}𝑖𝑖=1𝒩𝒩  is an IID Gaussian process, such that any logarithmic return has 

an expected value, variance and density given by: 

𝐸𝐸(Δ𝑋𝑋𝑖𝑖) = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡,   ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩,                             (11) 

𝑉𝑉𝑉𝑉𝑉𝑉(Δ𝑋𝑋𝑖𝑖) = 𝜎𝜎2Δ𝑡𝑡,   ∀  𝑖𝑖 = 1,2, … ,𝒩𝒩,                                   (12) 

 is an IID 
process that follows a Gaussian distribution with expected value 

𝑓𝑓(𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠; 𝜇𝜇, 𝜎𝜎) =
1

√2𝜋𝜋𝜎𝜎2(𝑡𝑡 − 𝑠𝑠)
𝑒𝑒
−12
{ 
 
  [𝑋𝑋𝑡𝑡−𝑋𝑋𝑠𝑠−(𝜇𝜇−

𝜎𝜎2
2 )(𝑡𝑡−𝑠𝑠)]

2

𝜎𝜎2(𝑡𝑡−𝑠𝑠)
} 
 
  

, ∀  0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇.      (6) 

 

We proceed to discretize the process as follows. We will assume that the stock’s prices 

are observed at times 0 = 𝑡𝑡0, 𝑡𝑡1, … , 𝑡𝑡𝒩𝒩 = 𝑇𝑇, and we will approximate 𝑡𝑡 − 𝑠𝑠 in equation (3) 

as a fix interval change in time given by Δ𝑡𝑡 = 𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1 that expresses the frequency of data, 

such that Δ𝑡𝑡 = 𝑡𝑡𝒩𝒩−𝑡𝑡0
𝒩𝒩 = 𝑇𝑇

𝒩𝒩. Therefore, denoting Δ𝑋𝑋𝑖𝑖 = 𝑋𝑋𝑡𝑡𝑖𝑖 − 𝑋𝑋𝑡𝑡𝑖𝑖−1 and Δ𝑊𝑊𝑖𝑖 = 𝑊𝑊𝑡𝑡𝑖𝑖 − 𝑊𝑊𝑡𝑡𝑖𝑖−1 we 

can discretize equation (3) in the following way:  

Δ𝑋𝑋𝑖𝑖 = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝜎𝜎Δ𝑊𝑊𝑖𝑖,   ∀ 𝑖𝑖 = 1,2, … ,𝒩𝒩.                                  (7) 

 

The expression Δ𝑊𝑊𝑖𝑖 which has an expected value 𝐸𝐸(Δ𝑊𝑊𝑖𝑖) = 0 and variance 𝑉𝑉𝑉𝑉𝑉𝑉(Δ𝑊𝑊𝑖𝑖) =

𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1 = Δ𝑡𝑡 can be approximated by √Δ𝑡𝑡𝜀𝜀𝑖𝑖 where 𝜀𝜀𝑖𝑖 is an IID process that follows a 

Gaussian distribution with expected value 𝐸𝐸(𝜀𝜀𝑖𝑖) = 0 and variance 𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀𝑖𝑖) = 1, such that: 

𝐸𝐸(𝜎𝜎Δ𝑊𝑊𝑖𝑖) = 𝐸𝐸(𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖) = 0, ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩,                                    (8) 

𝑉𝑉𝑉𝑉𝑉𝑉(𝜎𝜎Δ𝑊𝑊𝑖𝑖) = 𝑉𝑉𝑉𝑉𝑉𝑉(𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖) = 𝜎𝜎2Δ𝑡𝑡, ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩.                      (9) 

Therefore, equation (7) can be re-expressed as:  

Δ𝑋𝑋𝑖𝑖 = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖,   ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩.                              (10) 

The process {Δ𝑋𝑋𝑖𝑖}𝑖𝑖=1𝒩𝒩  is an IID Gaussian process, such that any logarithmic return has 

an expected value, variance and density given by: 

𝐸𝐸(Δ𝑋𝑋𝑖𝑖) = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡,   ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩,                             (11) 

𝑉𝑉𝑉𝑉𝑉𝑉(Δ𝑋𝑋𝑖𝑖) = 𝜎𝜎2Δ𝑡𝑡,   ∀  𝑖𝑖 = 1,2, … ,𝒩𝒩,                                   (12) 

 and 
variance 

𝑓𝑓(𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠; 𝜇𝜇, 𝜎𝜎) =
1

√2𝜋𝜋𝜎𝜎2(𝑡𝑡 − 𝑠𝑠)
𝑒𝑒
−12
{ 
 
  [𝑋𝑋𝑡𝑡−𝑋𝑋𝑠𝑠−(𝜇𝜇−

𝜎𝜎2
2 )(𝑡𝑡−𝑠𝑠)]

2

𝜎𝜎2(𝑡𝑡−𝑠𝑠)
} 
 
  

, ∀  0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇.      (6) 

 

We proceed to discretize the process as follows. We will assume that the stock’s prices 

are observed at times 0 = 𝑡𝑡0, 𝑡𝑡1, … , 𝑡𝑡𝒩𝒩 = 𝑇𝑇, and we will approximate 𝑡𝑡 − 𝑠𝑠 in equation (3) 

as a fix interval change in time given by Δ𝑡𝑡 = 𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1 that expresses the frequency of data, 

such that Δ𝑡𝑡 = 𝑡𝑡𝒩𝒩−𝑡𝑡0
𝒩𝒩 = 𝑇𝑇

𝒩𝒩. Therefore, denoting Δ𝑋𝑋𝑖𝑖 = 𝑋𝑋𝑡𝑡𝑖𝑖 − 𝑋𝑋𝑡𝑡𝑖𝑖−1 and Δ𝑊𝑊𝑖𝑖 = 𝑊𝑊𝑡𝑡𝑖𝑖 − 𝑊𝑊𝑡𝑡𝑖𝑖−1 we 

can discretize equation (3) in the following way:  

Δ𝑋𝑋𝑖𝑖 = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝜎𝜎Δ𝑊𝑊𝑖𝑖,   ∀ 𝑖𝑖 = 1,2, … ,𝒩𝒩.                                  (7) 

 

The expression Δ𝑊𝑊𝑖𝑖 which has an expected value 𝐸𝐸(Δ𝑊𝑊𝑖𝑖) = 0 and variance 𝑉𝑉𝑉𝑉𝑉𝑉(Δ𝑊𝑊𝑖𝑖) =

𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1 = Δ𝑡𝑡 can be approximated by √Δ𝑡𝑡𝜀𝜀𝑖𝑖 where 𝜀𝜀𝑖𝑖 is an IID process that follows a 

Gaussian distribution with expected value 𝐸𝐸(𝜀𝜀𝑖𝑖) = 0 and variance 𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀𝑖𝑖) = 1, such that: 

𝐸𝐸(𝜎𝜎Δ𝑊𝑊𝑖𝑖) = 𝐸𝐸(𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖) = 0, ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩,                                    (8) 

𝑉𝑉𝑉𝑉𝑉𝑉(𝜎𝜎Δ𝑊𝑊𝑖𝑖) = 𝑉𝑉𝑉𝑉𝑉𝑉(𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖) = 𝜎𝜎2Δ𝑡𝑡, ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩.                      (9) 

Therefore, equation (7) can be re-expressed as:  

Δ𝑋𝑋𝑖𝑖 = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖,   ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩.                              (10) 

The process {Δ𝑋𝑋𝑖𝑖}𝑖𝑖=1𝒩𝒩  is an IID Gaussian process, such that any logarithmic return has 

an expected value, variance and density given by: 

𝐸𝐸(Δ𝑋𝑋𝑖𝑖) = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡,   ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩,                             (11) 

𝑉𝑉𝑉𝑉𝑉𝑉(Δ𝑋𝑋𝑖𝑖) = 𝜎𝜎2Δ𝑡𝑡,   ∀  𝑖𝑖 = 1,2, … ,𝒩𝒩,                                   (12) 

, such that:

𝑓𝑓(𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠; 𝜇𝜇, 𝜎𝜎) =
1

√2𝜋𝜋𝜎𝜎2(𝑡𝑡 − 𝑠𝑠)
𝑒𝑒
−12
{ 
 
  [𝑋𝑋𝑡𝑡−𝑋𝑋𝑠𝑠−(𝜇𝜇−

𝜎𝜎2
2 )(𝑡𝑡−𝑠𝑠)]

2

𝜎𝜎2(𝑡𝑡−𝑠𝑠)
} 
 
  

, ∀  0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇.      (6) 

 

We proceed to discretize the process as follows. We will assume that the stock’s prices 

are observed at times 0 = 𝑡𝑡0, 𝑡𝑡1, … , 𝑡𝑡𝒩𝒩 = 𝑇𝑇, and we will approximate 𝑡𝑡 − 𝑠𝑠 in equation (3) 

as a fix interval change in time given by Δ𝑡𝑡 = 𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1 that expresses the frequency of data, 

such that Δ𝑡𝑡 = 𝑡𝑡𝒩𝒩−𝑡𝑡0
𝒩𝒩 = 𝑇𝑇

𝒩𝒩. Therefore, denoting Δ𝑋𝑋𝑖𝑖 = 𝑋𝑋𝑡𝑡𝑖𝑖 − 𝑋𝑋𝑡𝑡𝑖𝑖−1 and Δ𝑊𝑊𝑖𝑖 = 𝑊𝑊𝑡𝑡𝑖𝑖 − 𝑊𝑊𝑡𝑡𝑖𝑖−1 we 

can discretize equation (3) in the following way:  

Δ𝑋𝑋𝑖𝑖 = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝜎𝜎Δ𝑊𝑊𝑖𝑖,   ∀ 𝑖𝑖 = 1,2, … ,𝒩𝒩.                                  (7) 

 

The expression Δ𝑊𝑊𝑖𝑖 which has an expected value 𝐸𝐸(Δ𝑊𝑊𝑖𝑖) = 0 and variance 𝑉𝑉𝑉𝑉𝑉𝑉(Δ𝑊𝑊𝑖𝑖) =

𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1 = Δ𝑡𝑡 can be approximated by √Δ𝑡𝑡𝜀𝜀𝑖𝑖 where 𝜀𝜀𝑖𝑖 is an IID process that follows a 

Gaussian distribution with expected value 𝐸𝐸(𝜀𝜀𝑖𝑖) = 0 and variance 𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀𝑖𝑖) = 1, such that: 

𝐸𝐸(𝜎𝜎Δ𝑊𝑊𝑖𝑖) = 𝐸𝐸(𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖) = 0, ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩,                                    (8) 

𝑉𝑉𝑉𝑉𝑉𝑉(𝜎𝜎Δ𝑊𝑊𝑖𝑖) = 𝑉𝑉𝑉𝑉𝑉𝑉(𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖) = 𝜎𝜎2Δ𝑡𝑡, ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩.                      (9) 

Therefore, equation (7) can be re-expressed as:  

Δ𝑋𝑋𝑖𝑖 = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖,   ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩.                              (10) 

The process {Δ𝑋𝑋𝑖𝑖}𝑖𝑖=1𝒩𝒩  is an IID Gaussian process, such that any logarithmic return has 

an expected value, variance and density given by: 

𝐸𝐸(Δ𝑋𝑋𝑖𝑖) = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡,   ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩,                             (11) 

𝑉𝑉𝑉𝑉𝑉𝑉(Δ𝑋𝑋𝑖𝑖) = 𝜎𝜎2Δ𝑡𝑡,   ∀  𝑖𝑖 = 1,2, … ,𝒩𝒩,                                   (12) 
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Therefore, equation (7) can be re-expressed as: 

𝑓𝑓(𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠; 𝜇𝜇, 𝜎𝜎) =
1

√2𝜋𝜋𝜎𝜎2(𝑡𝑡 − 𝑠𝑠)
𝑒𝑒
−12
{ 
 
  [𝑋𝑋𝑡𝑡−𝑋𝑋𝑠𝑠−(𝜇𝜇−

𝜎𝜎2
2 )(𝑡𝑡−𝑠𝑠)]

2

𝜎𝜎2(𝑡𝑡−𝑠𝑠)
} 
 
  

, ∀  0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇.      (6) 

 

We proceed to discretize the process as follows. We will assume that the stock’s prices 

are observed at times 0 = 𝑡𝑡0, 𝑡𝑡1, … , 𝑡𝑡𝒩𝒩 = 𝑇𝑇, and we will approximate 𝑡𝑡 − 𝑠𝑠 in equation (3) 

as a fix interval change in time given by Δ𝑡𝑡 = 𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1 that expresses the frequency of data, 

such that Δ𝑡𝑡 = 𝑡𝑡𝒩𝒩−𝑡𝑡0
𝒩𝒩 = 𝑇𝑇

𝒩𝒩. Therefore, denoting Δ𝑋𝑋𝑖𝑖 = 𝑋𝑋𝑡𝑡𝑖𝑖 − 𝑋𝑋𝑡𝑡𝑖𝑖−1 and Δ𝑊𝑊𝑖𝑖 = 𝑊𝑊𝑡𝑡𝑖𝑖 − 𝑊𝑊𝑡𝑡𝑖𝑖−1 we 

can discretize equation (3) in the following way:  

Δ𝑋𝑋𝑖𝑖 = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝜎𝜎Δ𝑊𝑊𝑖𝑖,   ∀ 𝑖𝑖 = 1,2, … ,𝒩𝒩.                                  (7) 

 

The expression Δ𝑊𝑊𝑖𝑖 which has an expected value 𝐸𝐸(Δ𝑊𝑊𝑖𝑖) = 0 and variance 𝑉𝑉𝑉𝑉𝑉𝑉(Δ𝑊𝑊𝑖𝑖) =

𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1 = Δ𝑡𝑡 can be approximated by √Δ𝑡𝑡𝜀𝜀𝑖𝑖 where 𝜀𝜀𝑖𝑖 is an IID process that follows a 

Gaussian distribution with expected value 𝐸𝐸(𝜀𝜀𝑖𝑖) = 0 and variance 𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀𝑖𝑖) = 1, such that: 

𝐸𝐸(𝜎𝜎Δ𝑊𝑊𝑖𝑖) = 𝐸𝐸(𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖) = 0, ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩,                                    (8) 

𝑉𝑉𝑉𝑉𝑉𝑉(𝜎𝜎Δ𝑊𝑊𝑖𝑖) = 𝑉𝑉𝑉𝑉𝑉𝑉(𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖) = 𝜎𝜎2Δ𝑡𝑡, ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩.                      (9) 

Therefore, equation (7) can be re-expressed as:  

Δ𝑋𝑋𝑖𝑖 = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖,   ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩.                              (10) 

The process {Δ𝑋𝑋𝑖𝑖}𝑖𝑖=1𝒩𝒩  is an IID Gaussian process, such that any logarithmic return has 

an expected value, variance and density given by: 

𝐸𝐸(Δ𝑋𝑋𝑖𝑖) = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡,   ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩,                             (11) 

𝑉𝑉𝑉𝑉𝑉𝑉(Δ𝑋𝑋𝑖𝑖) = 𝜎𝜎2Δ𝑡𝑡,   ∀  𝑖𝑖 = 1,2, … ,𝒩𝒩,                                   (12) 

The process 

𝑓𝑓(𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠; 𝜇𝜇, 𝜎𝜎) =
1

√2𝜋𝜋𝜎𝜎2(𝑡𝑡 − 𝑠𝑠)
𝑒𝑒
−12
{ 
 
  [𝑋𝑋𝑡𝑡−𝑋𝑋𝑠𝑠−(𝜇𝜇−

𝜎𝜎2
2 )(𝑡𝑡−𝑠𝑠)]

2

𝜎𝜎2(𝑡𝑡−𝑠𝑠)
} 
 
  

, ∀  0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇.      (6) 

 

We proceed to discretize the process as follows. We will assume that the stock’s prices 

are observed at times 0 = 𝑡𝑡0, 𝑡𝑡1, … , 𝑡𝑡𝒩𝒩 = 𝑇𝑇, and we will approximate 𝑡𝑡 − 𝑠𝑠 in equation (3) 

as a fix interval change in time given by Δ𝑡𝑡 = 𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1 that expresses the frequency of data, 

such that Δ𝑡𝑡 = 𝑡𝑡𝒩𝒩−𝑡𝑡0
𝒩𝒩 = 𝑇𝑇

𝒩𝒩. Therefore, denoting Δ𝑋𝑋𝑖𝑖 = 𝑋𝑋𝑡𝑡𝑖𝑖 − 𝑋𝑋𝑡𝑡𝑖𝑖−1 and Δ𝑊𝑊𝑖𝑖 = 𝑊𝑊𝑡𝑡𝑖𝑖 − 𝑊𝑊𝑡𝑡𝑖𝑖−1 we 

can discretize equation (3) in the following way:  

Δ𝑋𝑋𝑖𝑖 = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝜎𝜎Δ𝑊𝑊𝑖𝑖,   ∀ 𝑖𝑖 = 1,2, … ,𝒩𝒩.                                  (7) 

 

The expression Δ𝑊𝑊𝑖𝑖 which has an expected value 𝐸𝐸(Δ𝑊𝑊𝑖𝑖) = 0 and variance 𝑉𝑉𝑉𝑉𝑉𝑉(Δ𝑊𝑊𝑖𝑖) =

𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1 = Δ𝑡𝑡 can be approximated by √Δ𝑡𝑡𝜀𝜀𝑖𝑖 where 𝜀𝜀𝑖𝑖 is an IID process that follows a 

Gaussian distribution with expected value 𝐸𝐸(𝜀𝜀𝑖𝑖) = 0 and variance 𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀𝑖𝑖) = 1, such that: 

𝐸𝐸(𝜎𝜎Δ𝑊𝑊𝑖𝑖) = 𝐸𝐸(𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖) = 0, ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩,                                    (8) 

𝑉𝑉𝑉𝑉𝑉𝑉(𝜎𝜎Δ𝑊𝑊𝑖𝑖) = 𝑉𝑉𝑉𝑉𝑉𝑉(𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖) = 𝜎𝜎2Δ𝑡𝑡, ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩.                      (9) 

Therefore, equation (7) can be re-expressed as:  

Δ𝑋𝑋𝑖𝑖 = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖,   ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩.                              (10) 

The process {Δ𝑋𝑋𝑖𝑖}𝑖𝑖=1𝒩𝒩  is an IID Gaussian process, such that any logarithmic return has 

an expected value, variance and density given by: 

𝐸𝐸(Δ𝑋𝑋𝑖𝑖) = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡,   ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩,                             (11) 

𝑉𝑉𝑉𝑉𝑉𝑉(Δ𝑋𝑋𝑖𝑖) = 𝜎𝜎2Δ𝑡𝑡,   ∀  𝑖𝑖 = 1,2, … ,𝒩𝒩,                                   (12) 

 is an IID Gaussian process, such that any logarithmic re-
turn has an expected value, variance and density given by:

𝑓𝑓(𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠; 𝜇𝜇, 𝜎𝜎) =
1

√2𝜋𝜋𝜎𝜎2(𝑡𝑡 − 𝑠𝑠)
𝑒𝑒
−12
{ 
 
  [𝑋𝑋𝑡𝑡−𝑋𝑋𝑠𝑠−(𝜇𝜇−

𝜎𝜎2
2 )(𝑡𝑡−𝑠𝑠)]

2

𝜎𝜎2(𝑡𝑡−𝑠𝑠)
} 
 
  

, ∀  0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇.      (6) 

 

We proceed to discretize the process as follows. We will assume that the stock’s prices 

are observed at times 0 = 𝑡𝑡0, 𝑡𝑡1, … , 𝑡𝑡𝒩𝒩 = 𝑇𝑇, and we will approximate 𝑡𝑡 − 𝑠𝑠 in equation (3) 

as a fix interval change in time given by Δ𝑡𝑡 = 𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1 that expresses the frequency of data, 

such that Δ𝑡𝑡 = 𝑡𝑡𝒩𝒩−𝑡𝑡0
𝒩𝒩 = 𝑇𝑇

𝒩𝒩. Therefore, denoting Δ𝑋𝑋𝑖𝑖 = 𝑋𝑋𝑡𝑡𝑖𝑖 − 𝑋𝑋𝑡𝑡𝑖𝑖−1 and Δ𝑊𝑊𝑖𝑖 = 𝑊𝑊𝑡𝑡𝑖𝑖 − 𝑊𝑊𝑡𝑡𝑖𝑖−1 we 

can discretize equation (3) in the following way:  

Δ𝑋𝑋𝑖𝑖 = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝜎𝜎Δ𝑊𝑊𝑖𝑖,   ∀ 𝑖𝑖 = 1,2, … ,𝒩𝒩.                                  (7) 

 

The expression Δ𝑊𝑊𝑖𝑖 which has an expected value 𝐸𝐸(Δ𝑊𝑊𝑖𝑖) = 0 and variance 𝑉𝑉𝑉𝑉𝑉𝑉(Δ𝑊𝑊𝑖𝑖) =

𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1 = Δ𝑡𝑡 can be approximated by √Δ𝑡𝑡𝜀𝜀𝑖𝑖 where 𝜀𝜀𝑖𝑖 is an IID process that follows a 

Gaussian distribution with expected value 𝐸𝐸(𝜀𝜀𝑖𝑖) = 0 and variance 𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀𝑖𝑖) = 1, such that: 

𝐸𝐸(𝜎𝜎Δ𝑊𝑊𝑖𝑖) = 𝐸𝐸(𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖) = 0, ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩,                                    (8) 

𝑉𝑉𝑉𝑉𝑉𝑉(𝜎𝜎Δ𝑊𝑊𝑖𝑖) = 𝑉𝑉𝑉𝑉𝑉𝑉(𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖) = 𝜎𝜎2Δ𝑡𝑡, ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩.                      (9) 

Therefore, equation (7) can be re-expressed as:  

Δ𝑋𝑋𝑖𝑖 = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖,   ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩.                              (10) 

The process {Δ𝑋𝑋𝑖𝑖}𝑖𝑖=1𝒩𝒩  is an IID Gaussian process, such that any logarithmic return has 

an expected value, variance and density given by: 

𝐸𝐸(Δ𝑋𝑋𝑖𝑖) = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡,   ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩,                             (11) 

𝑉𝑉𝑉𝑉𝑉𝑉(Δ𝑋𝑋𝑖𝑖) = 𝜎𝜎2Δ𝑡𝑡,   ∀  𝑖𝑖 = 1,2, … ,𝒩𝒩,                                   (12) 

𝑓𝑓(Δ𝑋𝑋𝑖𝑖; 𝜇𝜇, 𝜎𝜎) =
1

√2𝜋𝜋𝜎𝜎2Δ𝑡𝑡
𝑒𝑒
−12
{ 
 
  [Δ𝑋𝑋𝑖𝑖−(𝜇𝜇−

𝜎𝜎2
2 )Δ𝑡𝑡]

2

𝜎𝜎2Δt
} 
 
  

, ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩.                       (13) 

 

Notice that equations (11), (12), and (13) are consistent with equations (4), (5), and (6) 

respectively in a discretized framework.   

The estimation using the maximum likelihood method has been studied extensively in 

the literature for this stochastic process using equation (13) (see for example Phillips and 

Yu, 2009 or Moreno Trujillo, 2011). In fact, departing from equation (13) it is well known 

that the joint log-likelihood function ℓ(𝜇𝜇, 𝜎𝜎) is given by:  

ℓ(𝜇𝜇, 𝜎𝜎) = −𝒩𝒩2 𝐿𝐿𝐿𝐿(2𝜋𝜋Δ𝑡𝑡) −𝒩𝒩𝐿𝐿𝐿𝐿(𝜎𝜎) −
1

2𝜎𝜎2Δt∑[Δ𝑋𝑋𝑖𝑖 − (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡]

2𝒩𝒩

𝑖𝑖=1
,       (14) 

and that from equation (14), the MLE of 𝜇𝜇 and 𝜎𝜎, denoted as �̂�𝜇 and �̂�𝜎, are given by:  

�̂�𝜇 = 𝛿𝛿X𝛿𝛿𝑡𝑡 +
�̂�𝜎2
2 ,                                                            (15) 

�̂�𝜎2 = 1
𝒩𝒩∑

(Δ𝑋𝑋𝑖𝑖)2
Δ𝑡𝑡

𝒩𝒩

𝑖𝑖=1
− 1
𝒩𝒩
(𝛿𝛿𝑋𝑋)2
𝛿𝛿𝑡𝑡 ,                                               (16) 

where 𝛿𝛿𝑋𝑋 = ∑ Δ𝑋𝑋𝑖𝑖𝒩𝒩
𝑖𝑖=1 = 𝑋𝑋𝑡𝑡𝒩𝒩 − 𝑋𝑋𝑡𝑡0 and 𝛿𝛿𝑡𝑡 = ∑ Δ𝑡𝑡𝒩𝒩

𝑖𝑖=1 = 𝑡𝑡𝒩𝒩 − 𝑡𝑡0 = 𝒩𝒩Δ𝑡𝑡.  

Or alternatively: 

(�̂�𝜇 − �̂�𝜎
2

2 )Δ𝑡𝑡 =
∑ Δ𝑋𝑋𝑖𝑖𝒩𝒩
𝑖𝑖=1
𝒩𝒩 = �̅�𝑟,                                              (17) 

�̂�𝜎2Δ𝑡𝑡 = 1
𝒩𝒩∑(Δ𝑋𝑋𝑖𝑖 − �̅�𝑟)2

𝒩𝒩

𝑖𝑖=1
= 𝜎𝜎𝑟𝑟2,                                              (18) 

what implies that (�̂�𝜇 − �̂�𝜎2
2 ) Δ𝑡𝑡 can be estimated as the mean of the logarithmic returns �̅�𝑟 

and �̂�𝜎2Δ𝑡𝑡 as the population variance of the logarithmic returns 𝜎𝜎𝑟𝑟2 as indicated by Moreno 

Trujillo (2011).  

Notice that equations (11), (12), and (13) are consistent with equations (4), (5), 
and (6) respectively in a discretized framework.  

The estimation using the maximum likelihood method has been studied 
extensively in the literature for this stochastic process using equation (13) (see 
for example Phillips and Yu, 2009 or Moreno Trujillo, 2011). In fact, depart-
ing from equation (13) it is well known that the joint log-likelihood function 

𝑓𝑓(Δ𝑋𝑋𝑖𝑖; 𝜇𝜇, 𝜎𝜎) =
1

√2𝜋𝜋𝜎𝜎2Δ𝑡𝑡
𝑒𝑒
−12
{ 
 
  [Δ𝑋𝑋𝑖𝑖−(𝜇𝜇−

𝜎𝜎2
2 )Δ𝑡𝑡]

2

𝜎𝜎2Δt
} 
 
  

, ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩.                       (13) 

 

Notice that equations (11), (12), and (13) are consistent with equations (4), (5), and (6) 

respectively in a discretized framework.   

The estimation using the maximum likelihood method has been studied extensively in 

the literature for this stochastic process using equation (13) (see for example Phillips and 

Yu, 2009 or Moreno Trujillo, 2011). In fact, departing from equation (13) it is well known 

that the joint log-likelihood function ℓ(𝜇𝜇, 𝜎𝜎) is given by:  

ℓ(𝜇𝜇, 𝜎𝜎) = −𝒩𝒩2 𝐿𝐿𝐿𝐿(2𝜋𝜋Δ𝑡𝑡) −𝒩𝒩𝐿𝐿𝐿𝐿(𝜎𝜎) −
1

2𝜎𝜎2Δt∑[Δ𝑋𝑋𝑖𝑖 − (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡]

2𝒩𝒩

𝑖𝑖=1
,       (14) 

and that from equation (14), the MLE of 𝜇𝜇 and 𝜎𝜎, denoted as �̂�𝜇 and �̂�𝜎, are given by:  

�̂�𝜇 = 𝛿𝛿X𝛿𝛿𝑡𝑡 +
�̂�𝜎2
2 ,                                                            (15) 

�̂�𝜎2 = 1
𝒩𝒩∑

(Δ𝑋𝑋𝑖𝑖)2
Δ𝑡𝑡

𝒩𝒩

𝑖𝑖=1
− 1
𝒩𝒩
(𝛿𝛿𝑋𝑋)2
𝛿𝛿𝑡𝑡 ,                                               (16) 

where 𝛿𝛿𝑋𝑋 = ∑ Δ𝑋𝑋𝑖𝑖𝒩𝒩
𝑖𝑖=1 = 𝑋𝑋𝑡𝑡𝒩𝒩 − 𝑋𝑋𝑡𝑡0 and 𝛿𝛿𝑡𝑡 = ∑ Δ𝑡𝑡𝒩𝒩

𝑖𝑖=1 = 𝑡𝑡𝒩𝒩 − 𝑡𝑡0 = 𝒩𝒩Δ𝑡𝑡.  

Or alternatively: 

(�̂�𝜇 − �̂�𝜎
2

2 )Δ𝑡𝑡 =
∑ Δ𝑋𝑋𝑖𝑖𝒩𝒩
𝑖𝑖=1
𝒩𝒩 = �̅�𝑟,                                              (17) 

�̂�𝜎2Δ𝑡𝑡 = 1
𝒩𝒩∑(Δ𝑋𝑋𝑖𝑖 − �̅�𝑟)2

𝒩𝒩

𝑖𝑖=1
= 𝜎𝜎𝑟𝑟2,                                              (18) 

what implies that (�̂�𝜇 − �̂�𝜎2
2 ) Δ𝑡𝑡 can be estimated as the mean of the logarithmic returns �̅�𝑟 

and �̂�𝜎2Δ𝑡𝑡 as the population variance of the logarithmic returns 𝜎𝜎𝑟𝑟2 as indicated by Moreno 

Trujillo (2011).  

 is given by: 

𝑓𝑓(Δ𝑋𝑋𝑖𝑖; 𝜇𝜇, 𝜎𝜎) =
1

√2𝜋𝜋𝜎𝜎2Δ𝑡𝑡
𝑒𝑒
−12
{ 
 
  [Δ𝑋𝑋𝑖𝑖−(𝜇𝜇−

𝜎𝜎2
2 )Δ𝑡𝑡]

2

𝜎𝜎2Δt
} 
 
  

, ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩.                       (13) 

 

Notice that equations (11), (12), and (13) are consistent with equations (4), (5), and (6) 

respectively in a discretized framework.   

The estimation using the maximum likelihood method has been studied extensively in 

the literature for this stochastic process using equation (13) (see for example Phillips and 

Yu, 2009 or Moreno Trujillo, 2011). In fact, departing from equation (13) it is well known 

that the joint log-likelihood function ℓ(𝜇𝜇, 𝜎𝜎) is given by:  

ℓ(𝜇𝜇, 𝜎𝜎) = −𝒩𝒩2 𝐿𝐿𝐿𝐿(2𝜋𝜋Δ𝑡𝑡) −𝒩𝒩𝐿𝐿𝐿𝐿(𝜎𝜎) −
1

2𝜎𝜎2Δt∑[Δ𝑋𝑋𝑖𝑖 − (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡]

2𝒩𝒩

𝑖𝑖=1
,       (14) 

and that from equation (14), the MLE of 𝜇𝜇 and 𝜎𝜎, denoted as �̂�𝜇 and �̂�𝜎, are given by:  

�̂�𝜇 = 𝛿𝛿X𝛿𝛿𝑡𝑡 +
�̂�𝜎2
2 ,                                                            (15) 

�̂�𝜎2 = 1
𝒩𝒩∑

(Δ𝑋𝑋𝑖𝑖)2
Δ𝑡𝑡

𝒩𝒩

𝑖𝑖=1
− 1
𝒩𝒩
(𝛿𝛿𝑋𝑋)2
𝛿𝛿𝑡𝑡 ,                                               (16) 

where 𝛿𝛿𝑋𝑋 = ∑ Δ𝑋𝑋𝑖𝑖𝒩𝒩
𝑖𝑖=1 = 𝑋𝑋𝑡𝑡𝒩𝒩 − 𝑋𝑋𝑡𝑡0 and 𝛿𝛿𝑡𝑡 = ∑ Δ𝑡𝑡𝒩𝒩

𝑖𝑖=1 = 𝑡𝑡𝒩𝒩 − 𝑡𝑡0 = 𝒩𝒩Δ𝑡𝑡.  

Or alternatively: 

(�̂�𝜇 − �̂�𝜎
2

2 )Δ𝑡𝑡 =
∑ Δ𝑋𝑋𝑖𝑖𝒩𝒩
𝑖𝑖=1
𝒩𝒩 = �̅�𝑟,                                              (17) 

�̂�𝜎2Δ𝑡𝑡 = 1
𝒩𝒩∑(Δ𝑋𝑋𝑖𝑖 − �̅�𝑟)2

𝒩𝒩

𝑖𝑖=1
= 𝜎𝜎𝑟𝑟2,                                              (18) 

what implies that (�̂�𝜇 − �̂�𝜎2
2 ) Δ𝑡𝑡 can be estimated as the mean of the logarithmic returns �̅�𝑟 

and �̂�𝜎2Δ𝑡𝑡 as the population variance of the logarithmic returns 𝜎𝜎𝑟𝑟2 as indicated by Moreno 

Trujillo (2011).  

and that from equation (14), the MLE of µ and σ, denoted as µ̂ and σ̂, are given by: 

𝑓𝑓(Δ𝑋𝑋𝑖𝑖; 𝜇𝜇, 𝜎𝜎) =
1

√2𝜋𝜋𝜎𝜎2Δ𝑡𝑡
𝑒𝑒
−12
{ 
 
  [Δ𝑋𝑋𝑖𝑖−(𝜇𝜇−

𝜎𝜎2
2 )Δ𝑡𝑡]

2

𝜎𝜎2Δt
} 
 
  

, ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩.                       (13) 

 

Notice that equations (11), (12), and (13) are consistent with equations (4), (5), and (6) 

respectively in a discretized framework.   

The estimation using the maximum likelihood method has been studied extensively in 

the literature for this stochastic process using equation (13) (see for example Phillips and 

Yu, 2009 or Moreno Trujillo, 2011). In fact, departing from equation (13) it is well known 

that the joint log-likelihood function ℓ(𝜇𝜇, 𝜎𝜎) is given by:  

ℓ(𝜇𝜇, 𝜎𝜎) = −𝒩𝒩2 𝐿𝐿𝐿𝐿(2𝜋𝜋Δ𝑡𝑡) −𝒩𝒩𝐿𝐿𝐿𝐿(𝜎𝜎) −
1

2𝜎𝜎2Δt∑[Δ𝑋𝑋𝑖𝑖 − (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡]

2𝒩𝒩

𝑖𝑖=1
,       (14) 

and that from equation (14), the MLE of 𝜇𝜇 and 𝜎𝜎, denoted as �̂�𝜇 and �̂�𝜎, are given by:  

�̂�𝜇 = 𝛿𝛿X𝛿𝛿𝑡𝑡 +
�̂�𝜎2
2 ,                                                            (15) 

�̂�𝜎2 = 1
𝒩𝒩∑

(Δ𝑋𝑋𝑖𝑖)2
Δ𝑡𝑡

𝒩𝒩

𝑖𝑖=1
− 1
𝒩𝒩
(𝛿𝛿𝑋𝑋)2
𝛿𝛿𝑡𝑡 ,                                               (16) 

where 𝛿𝛿𝑋𝑋 = ∑ Δ𝑋𝑋𝑖𝑖𝒩𝒩
𝑖𝑖=1 = 𝑋𝑋𝑡𝑡𝒩𝒩 − 𝑋𝑋𝑡𝑡0 and 𝛿𝛿𝑡𝑡 = ∑ Δ𝑡𝑡𝒩𝒩

𝑖𝑖=1 = 𝑡𝑡𝒩𝒩 − 𝑡𝑡0 = 𝒩𝒩Δ𝑡𝑡.  

Or alternatively: 

(�̂�𝜇 − �̂�𝜎
2

2 )Δ𝑡𝑡 =
∑ Δ𝑋𝑋𝑖𝑖𝒩𝒩
𝑖𝑖=1
𝒩𝒩 = �̅�𝑟,                                              (17) 

�̂�𝜎2Δ𝑡𝑡 = 1
𝒩𝒩∑(Δ𝑋𝑋𝑖𝑖 − �̅�𝑟)2

𝒩𝒩

𝑖𝑖=1
= 𝜎𝜎𝑟𝑟2,                                              (18) 

what implies that (�̂�𝜇 − �̂�𝜎2
2 ) Δ𝑡𝑡 can be estimated as the mean of the logarithmic returns �̅�𝑟 

and �̂�𝜎2Δ𝑡𝑡 as the population variance of the logarithmic returns 𝜎𝜎𝑟𝑟2 as indicated by Moreno 

Trujillo (2011).  
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where 

𝑓𝑓(Δ𝑋𝑋𝑖𝑖; 𝜇𝜇, 𝜎𝜎) =
1

√2𝜋𝜋𝜎𝜎2Δ𝑡𝑡
𝑒𝑒
−12
{ 
 
  [Δ𝑋𝑋𝑖𝑖−(𝜇𝜇−

𝜎𝜎2
2 )Δ𝑡𝑡]

2

𝜎𝜎2Δt
} 
 
  

, ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩.                       (13) 

 

Notice that equations (11), (12), and (13) are consistent with equations (4), (5), and (6) 

respectively in a discretized framework.   

The estimation using the maximum likelihood method has been studied extensively in 

the literature for this stochastic process using equation (13) (see for example Phillips and 

Yu, 2009 or Moreno Trujillo, 2011). In fact, departing from equation (13) it is well known 

that the joint log-likelihood function ℓ(𝜇𝜇, 𝜎𝜎) is given by:  

ℓ(𝜇𝜇, 𝜎𝜎) = −𝒩𝒩2 𝐿𝐿𝐿𝐿(2𝜋𝜋Δ𝑡𝑡) −𝒩𝒩𝐿𝐿𝐿𝐿(𝜎𝜎) −
1

2𝜎𝜎2Δt∑[Δ𝑋𝑋𝑖𝑖 − (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡]

2𝒩𝒩

𝑖𝑖=1
,       (14) 

and that from equation (14), the MLE of 𝜇𝜇 and 𝜎𝜎, denoted as �̂�𝜇 and �̂�𝜎, are given by:  

�̂�𝜇 = 𝛿𝛿X𝛿𝛿𝑡𝑡 +
�̂�𝜎2
2 ,                                                            (15) 

�̂�𝜎2 = 1
𝒩𝒩∑

(Δ𝑋𝑋𝑖𝑖)2
Δ𝑡𝑡

𝒩𝒩

𝑖𝑖=1
− 1
𝒩𝒩
(𝛿𝛿𝑋𝑋)2
𝛿𝛿𝑡𝑡 ,                                               (16) 

where 𝛿𝛿𝑋𝑋 = ∑ Δ𝑋𝑋𝑖𝑖𝒩𝒩
𝑖𝑖=1 = 𝑋𝑋𝑡𝑡𝒩𝒩 − 𝑋𝑋𝑡𝑡0 and 𝛿𝛿𝑡𝑡 = ∑ Δ𝑡𝑡𝒩𝒩

𝑖𝑖=1 = 𝑡𝑡𝒩𝒩 − 𝑡𝑡0 = 𝒩𝒩Δ𝑡𝑡.  

Or alternatively: 

(�̂�𝜇 − �̂�𝜎
2

2 )Δ𝑡𝑡 =
∑ Δ𝑋𝑋𝑖𝑖𝒩𝒩
𝑖𝑖=1
𝒩𝒩 = �̅�𝑟,                                              (17) 

�̂�𝜎2Δ𝑡𝑡 = 1
𝒩𝒩∑(Δ𝑋𝑋𝑖𝑖 − �̅�𝑟)2

𝒩𝒩

𝑖𝑖=1
= 𝜎𝜎𝑟𝑟2,                                              (18) 

what implies that (�̂�𝜇 − �̂�𝜎2
2 ) Δ𝑡𝑡 can be estimated as the mean of the logarithmic returns �̅�𝑟 

and �̂�𝜎2Δ𝑡𝑡 as the population variance of the logarithmic returns 𝜎𝜎𝑟𝑟2 as indicated by Moreno 

Trujillo (2011).  

 and 

𝑓𝑓(Δ𝑋𝑋𝑖𝑖; 𝜇𝜇, 𝜎𝜎) =
1

√2𝜋𝜋𝜎𝜎2Δ𝑡𝑡
𝑒𝑒
−12
{ 
 
  [Δ𝑋𝑋𝑖𝑖−(𝜇𝜇−

𝜎𝜎2
2 )Δ𝑡𝑡]

2

𝜎𝜎2Δt
} 
 
  

, ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩.                       (13) 

 

Notice that equations (11), (12), and (13) are consistent with equations (4), (5), and (6) 

respectively in a discretized framework.   

The estimation using the maximum likelihood method has been studied extensively in 

the literature for this stochastic process using equation (13) (see for example Phillips and 

Yu, 2009 or Moreno Trujillo, 2011). In fact, departing from equation (13) it is well known 

that the joint log-likelihood function ℓ(𝜇𝜇, 𝜎𝜎) is given by:  

ℓ(𝜇𝜇, 𝜎𝜎) = −𝒩𝒩2 𝐿𝐿𝐿𝐿(2𝜋𝜋Δ𝑡𝑡) −𝒩𝒩𝐿𝐿𝐿𝐿(𝜎𝜎) −
1

2𝜎𝜎2Δt∑[Δ𝑋𝑋𝑖𝑖 − (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡]

2𝒩𝒩

𝑖𝑖=1
,       (14) 

and that from equation (14), the MLE of 𝜇𝜇 and 𝜎𝜎, denoted as �̂�𝜇 and �̂�𝜎, are given by:  

�̂�𝜇 = 𝛿𝛿X𝛿𝛿𝑡𝑡 +
�̂�𝜎2
2 ,                                                            (15) 

�̂�𝜎2 = 1
𝒩𝒩∑

(Δ𝑋𝑋𝑖𝑖)2
Δ𝑡𝑡

𝒩𝒩

𝑖𝑖=1
− 1
𝒩𝒩
(𝛿𝛿𝑋𝑋)2
𝛿𝛿𝑡𝑡 ,                                               (16) 

where 𝛿𝛿𝑋𝑋 = ∑ Δ𝑋𝑋𝑖𝑖𝒩𝒩
𝑖𝑖=1 = 𝑋𝑋𝑡𝑡𝒩𝒩 − 𝑋𝑋𝑡𝑡0 and 𝛿𝛿𝑡𝑡 = ∑ Δ𝑡𝑡𝒩𝒩

𝑖𝑖=1 = 𝑡𝑡𝒩𝒩 − 𝑡𝑡0 = 𝒩𝒩Δ𝑡𝑡.  

Or alternatively: 

(�̂�𝜇 − �̂�𝜎
2

2 )Δ𝑡𝑡 =
∑ Δ𝑋𝑋𝑖𝑖𝒩𝒩
𝑖𝑖=1
𝒩𝒩 = �̅�𝑟,                                              (17) 

�̂�𝜎2Δ𝑡𝑡 = 1
𝒩𝒩∑(Δ𝑋𝑋𝑖𝑖 − �̅�𝑟)2

𝒩𝒩

𝑖𝑖=1
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maximum likelihood estimation theory (see Appendix A). Therefore, we con-
clude that in this case the frequency of the data is irrelevant in terms of the 
accuracy of the estimation of the trend parameter (measured by its variance). 
This will be the benchmark used in the next section. 
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Poisson process with intensity 𝜆𝜆 > 0 denoted by 𝑁𝑁 ≔ {𝑁𝑁𝑡𝑡, ℱ𝑡𝑡; 𝑡𝑡 ∈ T } that takes values on 

ℝ+, also defined on the probability space, where now 𝔽𝔽 ≔ {ℱ𝑡𝑡; 𝑡𝑡 ∈ T } is the one generated 

by both stochastic processes and augmented by all null sets of Ω. Again, for simplicity 

purposes we will assume that ℱ0 is almost trivial and that ℱ𝑇𝑇 = ℱ.  

Under the stochastic environment presented above, let us consider that the spot price 

of the stock follows a jump-diffusion process driven by the Wiener process and the Poisson 

process à la Press (1967) in the following way4:   

𝑑𝑑𝑆𝑆𝑡𝑡
𝑆𝑆𝑡𝑡−

= 𝜇𝜇𝑑𝑑𝑡𝑡 + 𝜎𝜎𝑑𝑑𝑊𝑊𝑡𝑡 + (𝑦𝑦𝑡𝑡 − 1)𝑑𝑑𝑁𝑁𝑡𝑡,                                          (21) 

with 𝜇𝜇 ∈ ℝ as the drift, and 𝜎𝜎 > 0 as the diffusion parameters. In contrast, 𝑦𝑦 represents 

the jump intensity or amplitude of jumps, modelled as an IID process that follows a log-

normal distribution, such that its logarithm 𝑌𝑌𝑡𝑡 = 𝐿𝐿𝐿𝐿(𝑦𝑦𝑡𝑡) follows a normal distribution with 

expected value 𝛽𝛽 ∈ ℝ and a variance 𝜂𝜂 > 0.  

By applying Itô’s lemma to jump-diffusion processes, we can see that the natural 

logarithmic of the asset 𝑋𝑋 = 𝐿𝐿𝐿𝐿(𝑆𝑆) follows an arithmetic Brownian motion plus a compound 

poisson process given by: 

𝑑𝑑𝑋𝑋𝑡𝑡 = (𝜇𝜇 − 𝜎𝜎2

2 ) 𝑑𝑑𝑡𝑡 + 𝜎𝜎𝑑𝑑𝑊𝑊𝑡𝑡 + 𝑌𝑌𝑡𝑡𝑑𝑑𝑁𝑁𝑡𝑡.                                       (22) 

The explicit solution of equation (22) is obtained by integrating between 𝑠𝑠 and 𝑡𝑡, where 

0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇 to obtain: 

 
4 Given that in this case the stochastic process is right continuous with left limits (càdlàg) then the 
notation 𝑆𝑆𝑡𝑡− will denote lim

𝑠𝑠↑𝑡𝑡
𝑆𝑆𝑠𝑠, while 𝑆𝑆𝑡𝑡 denotes lim

𝑠𝑠↓𝑡𝑡
𝑆𝑆𝑠𝑠 .   
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4 Given that in this case the stochastic process is right continuous with left limits (càdlàg) then the 
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𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠 = (𝜇𝜇 −
𝜎𝜎2
2 ) (𝑡𝑡 − 𝑠𝑠) + 𝜎𝜎(𝑊𝑊𝑡𝑡 −𝑊𝑊𝑠𝑠) + ∑ 𝑌𝑌𝑘𝑘

𝑁𝑁𝑡𝑡−𝑁𝑁𝑠𝑠

𝑘𝑘=1
.  ∀ 0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇.     (23) 

Notice that by conditioning 𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 to a specific number of jumps 𝑛𝑛 we have: 

 

𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠 = (𝜇𝜇 −
𝜎𝜎2
2 )(𝑡𝑡 − 𝑠𝑠) + 𝜎𝜎(𝑊𝑊𝑡𝑡 −𝑊𝑊𝑠𝑠) +∑𝑌𝑌𝑘𝑘

𝑛𝑛

𝑘𝑘=1
,        ∀ 0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇.    (24) 

From equation (24) where 𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 = 𝑛𝑛, we know that the increment or logarithmic return 

𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠 has expected value, variance and Gaussian density given by:  

𝐸𝐸(𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠|𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 = 𝑛𝑛) = (𝜇𝜇 −
𝜎𝜎2
2 ) (𝑡𝑡 − 𝑠𝑠) + 𝑛𝑛𝑛𝑛,   ∀  0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇,         (25) 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠|𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 = 𝑛𝑛) = 𝜎𝜎2(𝑡𝑡 − 𝑠𝑠) + 𝑛𝑛𝑛𝑛,   ∀  0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇,              (26) 

𝑓𝑓(𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠; 𝜇𝜇, 𝜎𝜎, 𝑛𝑛, 𝑛𝑛|𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 = 𝑛𝑛) =
1

√2𝜋𝜋√𝜎𝜎2(𝑡𝑡 − 𝑠𝑠) + 𝑛𝑛𝑛𝑛
𝑒𝑒
−12
{ 
 
  [𝑋𝑋𝑡𝑡−𝑋𝑋𝑠𝑠−(𝜇𝜇−

𝜎𝜎2
2 )(𝑡𝑡−𝑠𝑠)−𝑛𝑛𝑛𝑛]

2

𝜎𝜎2(𝑡𝑡−𝑠𝑠)+𝑛𝑛𝜂𝜂
} 
 
  

,

∀  0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇.      (27) 

Now, considering that the probability that the Poisson random variable 𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 takes 

the value 𝑛𝑛 is given by the Poisson distribution with parameter 𝜆𝜆(𝑡𝑡 − 𝑠𝑠): 

ℙ[𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 = 𝑛𝑛] =
[𝜆𝜆(𝑡𝑡 − 𝑠𝑠)]𝑛𝑛𝑒𝑒−[𝜆𝜆(𝑡𝑡−𝑠𝑠)]

𝑛𝑛! ,                                       (28) 

then, the probability density function of the independent and stationary increment or 

logarithmic return 𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠 as a whole is given by an infinite sum (the Poisson random 

variable can have infinite discrete values) that starts at 0 (the Poisson random variable has 

a support that starts at zero), where each term is a multiplication of the probability of the 

random variable 𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠 conditioned on a defined number of jumps 𝑛𝑛, multiplied by the 

probability mass function that the Poisson random variable 𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 takes that number of 

jumps 𝑛𝑛 (Bayes rule) in the following way:  
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Notice that by conditioning 𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 to a specific number of jumps 𝑛𝑛 we have: 

 

𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠 = (𝜇𝜇 −
𝜎𝜎2
2 )(𝑡𝑡 − 𝑠𝑠) + 𝜎𝜎(𝑊𝑊𝑡𝑡 −𝑊𝑊𝑠𝑠) +∑𝑌𝑌𝑘𝑘

𝑛𝑛
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,        ∀ 0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇.    (24) 

From equation (24) where 𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 = 𝑛𝑛, we know that the increment or logarithmic return 

𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠 has expected value, variance and Gaussian density given by:  

𝐸𝐸(𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠|𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 = 𝑛𝑛) = (𝜇𝜇 −
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𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠|𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 = 𝑛𝑛) = 𝜎𝜎2(𝑡𝑡 − 𝑠𝑠) + 𝑛𝑛𝑛𝑛,   ∀  0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇,              (26) 
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the value 𝑛𝑛 is given by the Poisson distribution with parameter 𝜆𝜆(𝑡𝑡 − 𝑠𝑠): 
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𝑛𝑛! ,                                       (28) 
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logarithmic return 𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠 as a whole is given by an infinite sum (the Poisson random 

variable can have infinite discrete values) that starts at 0 (the Poisson random variable has 

a support that starts at zero), where each term is a multiplication of the probability of the 

random variable 𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠 conditioned on a defined number of jumps 𝑛𝑛, multiplied by the 

probability mass function that the Poisson random variable 𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 takes that number of 

jumps 𝑛𝑛 (Bayes rule) in the following way:  
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From equation (24) where 𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 = 𝑛𝑛, we know that the increment or logarithmic return 

𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠 has expected value, variance and Gaussian density given by:  

𝐸𝐸(𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠|𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 = 𝑛𝑛) = (𝜇𝜇 −
𝜎𝜎2
2 ) (𝑡𝑡 − 𝑠𝑠) + 𝑛𝑛𝑛𝑛,   ∀  0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇,         (25) 
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the value 𝑛𝑛 is given by the Poisson distribution with parameter 𝜆𝜆(𝑡𝑡 − 𝑠𝑠): 

ℙ[𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 = 𝑛𝑛] =
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logarithmic return 𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠 as a whole is given by an infinite sum (the Poisson random 

variable can have infinite discrete values) that starts at 0 (the Poisson random variable has 

a support that starts at zero), where each term is a multiplication of the probability of the 

random variable 𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠 conditioned on a defined number of jumps 𝑛𝑛, multiplied by the 
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𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠 has expected value, variance and Gaussian density given by:  

𝐸𝐸(𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠|𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 = 𝑛𝑛) = (𝜇𝜇 −
𝜎𝜎2
2 ) (𝑡𝑡 − 𝑠𝑠) + 𝑛𝑛𝑛𝑛,   ∀  0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇,         (25) 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠|𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 = 𝑛𝑛) = 𝜎𝜎2(𝑡𝑡 − 𝑠𝑠) + 𝑛𝑛𝑛𝑛,   ∀  0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇,              (26) 

𝑓𝑓(𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠; 𝜇𝜇, 𝜎𝜎, 𝑛𝑛, 𝑛𝑛|𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 = 𝑛𝑛) =
1

√2𝜋𝜋√𝜎𝜎2(𝑡𝑡 − 𝑠𝑠) + 𝑛𝑛𝑛𝑛
𝑒𝑒
−12
{ 
 
  [𝑋𝑋𝑡𝑡−𝑋𝑋𝑠𝑠−(𝜇𝜇−

𝜎𝜎2
2 )(𝑡𝑡−𝑠𝑠)−𝑛𝑛𝑛𝑛]

2

𝜎𝜎2(𝑡𝑡−𝑠𝑠)+𝑛𝑛𝜂𝜂
} 
 
  

,

∀  0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇.      (27) 

Now, considering that the probability that the Poisson random variable 𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 takes 

the value 𝑛𝑛 is given by the Poisson distribution with parameter 𝜆𝜆(𝑡𝑡 − 𝑠𝑠): 

ℙ[𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 = 𝑛𝑛] =
[𝜆𝜆(𝑡𝑡 − 𝑠𝑠)]𝑛𝑛𝑒𝑒−[𝜆𝜆(𝑡𝑡−𝑠𝑠)]

𝑛𝑛! ,                                       (28) 

then, the probability density function of the independent and stationary increment or 

logarithmic return 𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠 as a whole is given by an infinite sum (the Poisson random 

variable can have infinite discrete values) that starts at 0 (the Poisson random variable has 

a support that starts at zero), where each term is a multiplication of the probability of the 

random variable 𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠 conditioned on a defined number of jumps 𝑛𝑛, multiplied by the 

probability mass function that the Poisson random variable 𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 takes that number of 

jumps 𝑛𝑛 (Bayes rule) in the following way:  

 
takes the value n is given by the Poisson distribution with parameter 

𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠 = (𝜇𝜇 −
𝜎𝜎2
2 ) (𝑡𝑡 − 𝑠𝑠) + 𝜎𝜎(𝑊𝑊𝑡𝑡 −𝑊𝑊𝑠𝑠) + ∑ 𝑌𝑌𝑘𝑘

𝑁𝑁𝑡𝑡−𝑁𝑁𝑠𝑠

𝑘𝑘=1
.  ∀ 0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇.     (23) 

Notice that by conditioning 𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 to a specific number of jumps 𝑛𝑛 we have: 

 

𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠 = (𝜇𝜇 −
𝜎𝜎2
2 )(𝑡𝑡 − 𝑠𝑠) + 𝜎𝜎(𝑊𝑊𝑡𝑡 −𝑊𝑊𝑠𝑠) +∑𝑌𝑌𝑘𝑘

𝑛𝑛

𝑘𝑘=1
,        ∀ 0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇.    (24) 

From equation (24) where 𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 = 𝑛𝑛, we know that the increment or logarithmic return 

𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠 has expected value, variance and Gaussian density given by:  

𝐸𝐸(𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠|𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 = 𝑛𝑛) = (𝜇𝜇 −
𝜎𝜎2
2 ) (𝑡𝑡 − 𝑠𝑠) + 𝑛𝑛𝑛𝑛,   ∀  0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇,         (25) 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠|𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 = 𝑛𝑛) = 𝜎𝜎2(𝑡𝑡 − 𝑠𝑠) + 𝑛𝑛𝑛𝑛,   ∀  0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇,              (26) 

𝑓𝑓(𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠; 𝜇𝜇, 𝜎𝜎, 𝑛𝑛, 𝑛𝑛|𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 = 𝑛𝑛) =
1

√2𝜋𝜋√𝜎𝜎2(𝑡𝑡 − 𝑠𝑠) + 𝑛𝑛𝑛𝑛
𝑒𝑒
−12
{ 
 
  [𝑋𝑋𝑡𝑡−𝑋𝑋𝑠𝑠−(𝜇𝜇−

𝜎𝜎2
2 )(𝑡𝑡−𝑠𝑠)−𝑛𝑛𝑛𝑛]

2

𝜎𝜎2(𝑡𝑡−𝑠𝑠)+𝑛𝑛𝜂𝜂
} 
 
  

,

∀  0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇.      (27) 

Now, considering that the probability that the Poisson random variable 𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 takes 

the value 𝑛𝑛 is given by the Poisson distribution with parameter 𝜆𝜆(𝑡𝑡 − 𝑠𝑠): 

ℙ[𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 = 𝑛𝑛] =
[𝜆𝜆(𝑡𝑡 − 𝑠𝑠)]𝑛𝑛𝑒𝑒−[𝜆𝜆(𝑡𝑡−𝑠𝑠)]

𝑛𝑛! ,                                       (28) 

then, the probability density function of the independent and stationary increment or 

logarithmic return 𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠 as a whole is given by an infinite sum (the Poisson random 

variable can have infinite discrete values) that starts at 0 (the Poisson random variable has 

a support that starts at zero), where each term is a multiplication of the probability of the 

random variable 𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠 conditioned on a defined number of jumps 𝑛𝑛, multiplied by the 

probability mass function that the Poisson random variable 𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 takes that number of 

jumps 𝑛𝑛 (Bayes rule) in the following way:  

:

𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠 = (𝜇𝜇 −
𝜎𝜎2
2 ) (𝑡𝑡 − 𝑠𝑠) + 𝜎𝜎(𝑊𝑊𝑡𝑡 −𝑊𝑊𝑠𝑠) + ∑ 𝑌𝑌𝑘𝑘

𝑁𝑁𝑡𝑡−𝑁𝑁𝑠𝑠

𝑘𝑘=1
.  ∀ 0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇.     (23) 

Notice that by conditioning 𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 to a specific number of jumps 𝑛𝑛 we have: 

 

𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠 = (𝜇𝜇 −
𝜎𝜎2
2 )(𝑡𝑡 − 𝑠𝑠) + 𝜎𝜎(𝑊𝑊𝑡𝑡 −𝑊𝑊𝑠𝑠) +∑𝑌𝑌𝑘𝑘

𝑛𝑛

𝑘𝑘=1
,        ∀ 0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇.    (24) 

From equation (24) where 𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 = 𝑛𝑛, we know that the increment or logarithmic return 

𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠 has expected value, variance and Gaussian density given by:  

𝐸𝐸(𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠|𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 = 𝑛𝑛) = (𝜇𝜇 −
𝜎𝜎2
2 ) (𝑡𝑡 − 𝑠𝑠) + 𝑛𝑛𝑛𝑛,   ∀  0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇,         (25) 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠|𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 = 𝑛𝑛) = 𝜎𝜎2(𝑡𝑡 − 𝑠𝑠) + 𝑛𝑛𝑛𝑛,   ∀  0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇,              (26) 

𝑓𝑓(𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠; 𝜇𝜇, 𝜎𝜎, 𝑛𝑛, 𝑛𝑛|𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 = 𝑛𝑛) =
1

√2𝜋𝜋√𝜎𝜎2(𝑡𝑡 − 𝑠𝑠) + 𝑛𝑛𝑛𝑛
𝑒𝑒
−12
{ 
 
  [𝑋𝑋𝑡𝑡−𝑋𝑋𝑠𝑠−(𝜇𝜇−

𝜎𝜎2
2 )(𝑡𝑡−𝑠𝑠)−𝑛𝑛𝑛𝑛]

2

𝜎𝜎2(𝑡𝑡−𝑠𝑠)+𝑛𝑛𝜂𝜂
} 
 
  

,

∀  0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇.      (27) 

Now, considering that the probability that the Poisson random variable 𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 takes 

the value 𝑛𝑛 is given by the Poisson distribution with parameter 𝜆𝜆(𝑡𝑡 − 𝑠𝑠): 

ℙ[𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 = 𝑛𝑛] =
[𝜆𝜆(𝑡𝑡 − 𝑠𝑠)]𝑛𝑛𝑒𝑒−[𝜆𝜆(𝑡𝑡−𝑠𝑠)]

𝑛𝑛! ,                                       (28) 

then, the probability density function of the independent and stationary increment or 

logarithmic return 𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠 as a whole is given by an infinite sum (the Poisson random 

variable can have infinite discrete values) that starts at 0 (the Poisson random variable has 

a support that starts at zero), where each term is a multiplication of the probability of the 

random variable 𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠 conditioned on a defined number of jumps 𝑛𝑛, multiplied by the 

probability mass function that the Poisson random variable 𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 takes that number of 

jumps 𝑛𝑛 (Bayes rule) in the following way:  

then, the probability density function of the independent and stationary incre-
ment or logarithmic return 

𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠 = (𝜇𝜇 −
𝜎𝜎2
2 ) (𝑡𝑡 − 𝑠𝑠) + 𝜎𝜎(𝑊𝑊𝑡𝑡 −𝑊𝑊𝑠𝑠) + ∑ 𝑌𝑌𝑘𝑘

𝑁𝑁𝑡𝑡−𝑁𝑁𝑠𝑠

𝑘𝑘=1
.  ∀ 0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇.     (23) 

Notice that by conditioning 𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 to a specific number of jumps 𝑛𝑛 we have: 

 

𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠 = (𝜇𝜇 −
𝜎𝜎2
2 )(𝑡𝑡 − 𝑠𝑠) + 𝜎𝜎(𝑊𝑊𝑡𝑡 −𝑊𝑊𝑠𝑠) +∑𝑌𝑌𝑘𝑘

𝑛𝑛

𝑘𝑘=1
,        ∀ 0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇.    (24) 

From equation (24) where 𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 = 𝑛𝑛, we know that the increment or logarithmic return 

𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠 has expected value, variance and Gaussian density given by:  

𝐸𝐸(𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠|𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 = 𝑛𝑛) = (𝜇𝜇 −
𝜎𝜎2
2 ) (𝑡𝑡 − 𝑠𝑠) + 𝑛𝑛𝑛𝑛,   ∀  0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇,         (25) 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠|𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 = 𝑛𝑛) = 𝜎𝜎2(𝑡𝑡 − 𝑠𝑠) + 𝑛𝑛𝑛𝑛,   ∀  0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇,              (26) 

𝑓𝑓(𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠; 𝜇𝜇, 𝜎𝜎, 𝑛𝑛, 𝑛𝑛|𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 = 𝑛𝑛) =
1

√2𝜋𝜋√𝜎𝜎2(𝑡𝑡 − 𝑠𝑠) + 𝑛𝑛𝑛𝑛
𝑒𝑒
−12
{ 
 
  [𝑋𝑋𝑡𝑡−𝑋𝑋𝑠𝑠−(𝜇𝜇−

𝜎𝜎2
2 )(𝑡𝑡−𝑠𝑠)−𝑛𝑛𝑛𝑛]

2

𝜎𝜎2(𝑡𝑡−𝑠𝑠)+𝑛𝑛𝜂𝜂
} 
 
  

,

∀  0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇.      (27) 

Now, considering that the probability that the Poisson random variable 𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 takes 

the value 𝑛𝑛 is given by the Poisson distribution with parameter 𝜆𝜆(𝑡𝑡 − 𝑠𝑠): 

ℙ[𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 = 𝑛𝑛] =
[𝜆𝜆(𝑡𝑡 − 𝑠𝑠)]𝑛𝑛𝑒𝑒−[𝜆𝜆(𝑡𝑡−𝑠𝑠)]

𝑛𝑛! ,                                       (28) 

then, the probability density function of the independent and stationary increment or 

logarithmic return 𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠 as a whole is given by an infinite sum (the Poisson random 

variable can have infinite discrete values) that starts at 0 (the Poisson random variable has 

a support that starts at zero), where each term is a multiplication of the probability of the 

random variable 𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠 conditioned on a defined number of jumps 𝑛𝑛, multiplied by the 

probability mass function that the Poisson random variable 𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 takes that number of 

jumps 𝑛𝑛 (Bayes rule) in the following way:  

 as a whole is given by an infinite sum (the 
Poisson random variable can have infinite discrete values) that starts at 0 (the 
Poisson random variable has a support that starts at zero, where each term is a 
multiplication of the probability of the random variable 

𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠 = (𝜇𝜇 −
𝜎𝜎2
2 ) (𝑡𝑡 − 𝑠𝑠) + 𝜎𝜎(𝑊𝑊𝑡𝑡 −𝑊𝑊𝑠𝑠) + ∑ 𝑌𝑌𝑘𝑘

𝑁𝑁𝑡𝑡−𝑁𝑁𝑠𝑠

𝑘𝑘=1
.  ∀ 0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇.     (23) 

Notice that by conditioning 𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 to a specific number of jumps 𝑛𝑛 we have: 

 

𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠 = (𝜇𝜇 −
𝜎𝜎2
2 )(𝑡𝑡 − 𝑠𝑠) + 𝜎𝜎(𝑊𝑊𝑡𝑡 −𝑊𝑊𝑠𝑠) +∑𝑌𝑌𝑘𝑘

𝑛𝑛

𝑘𝑘=1
,        ∀ 0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇.    (24) 

From equation (24) where 𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 = 𝑛𝑛, we know that the increment or logarithmic return 

𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠 has expected value, variance and Gaussian density given by:  

𝐸𝐸(𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠|𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 = 𝑛𝑛) = (𝜇𝜇 −
𝜎𝜎2
2 ) (𝑡𝑡 − 𝑠𝑠) + 𝑛𝑛𝑛𝑛,   ∀  0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇,         (25) 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠|𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 = 𝑛𝑛) = 𝜎𝜎2(𝑡𝑡 − 𝑠𝑠) + 𝑛𝑛𝑛𝑛,   ∀  0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇,              (26) 

𝑓𝑓(𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠; 𝜇𝜇, 𝜎𝜎, 𝑛𝑛, 𝑛𝑛|𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 = 𝑛𝑛) =
1

√2𝜋𝜋√𝜎𝜎2(𝑡𝑡 − 𝑠𝑠) + 𝑛𝑛𝑛𝑛
𝑒𝑒
−12
{ 
 
  [𝑋𝑋𝑡𝑡−𝑋𝑋𝑠𝑠−(𝜇𝜇−

𝜎𝜎2
2 )(𝑡𝑡−𝑠𝑠)−𝑛𝑛𝑛𝑛]

2

𝜎𝜎2(𝑡𝑡−𝑠𝑠)+𝑛𝑛𝜂𝜂
} 
 
  

,

∀  0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇.      (27) 

Now, considering that the probability that the Poisson random variable 𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 takes 

the value 𝑛𝑛 is given by the Poisson distribution with parameter 𝜆𝜆(𝑡𝑡 − 𝑠𝑠): 

ℙ[𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 = 𝑛𝑛] =
[𝜆𝜆(𝑡𝑡 − 𝑠𝑠)]𝑛𝑛𝑒𝑒−[𝜆𝜆(𝑡𝑡−𝑠𝑠)]

𝑛𝑛! ,                                       (28) 

then, the probability density function of the independent and stationary increment or 

logarithmic return 𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠 as a whole is given by an infinite sum (the Poisson random 

variable can have infinite discrete values) that starts at 0 (the Poisson random variable has 

a support that starts at zero), where each term is a multiplication of the probability of the 

random variable 𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠 conditioned on a defined number of jumps 𝑛𝑛, multiplied by the 

probability mass function that the Poisson random variable 𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 takes that number of 

jumps 𝑛𝑛 (Bayes rule) in the following way:  

 conditioned on 
a defined number of jumps , multiplied by the probability mass function that 
the Poisson random variable 

𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠 = (𝜇𝜇 −
𝜎𝜎2
2 ) (𝑡𝑡 − 𝑠𝑠) + 𝜎𝜎(𝑊𝑊𝑡𝑡 −𝑊𝑊𝑠𝑠) + ∑ 𝑌𝑌𝑘𝑘

𝑁𝑁𝑡𝑡−𝑁𝑁𝑠𝑠

𝑘𝑘=1
.  ∀ 0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇.     (23) 

Notice that by conditioning 𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 to a specific number of jumps 𝑛𝑛 we have: 

 

𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠 = (𝜇𝜇 −
𝜎𝜎2
2 )(𝑡𝑡 − 𝑠𝑠) + 𝜎𝜎(𝑊𝑊𝑡𝑡 −𝑊𝑊𝑠𝑠) +∑𝑌𝑌𝑘𝑘

𝑛𝑛

𝑘𝑘=1
,        ∀ 0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇.    (24) 

From equation (24) where 𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 = 𝑛𝑛, we know that the increment or logarithmic return 

𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠 has expected value, variance and Gaussian density given by:  

𝐸𝐸(𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠|𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 = 𝑛𝑛) = (𝜇𝜇 −
𝜎𝜎2
2 ) (𝑡𝑡 − 𝑠𝑠) + 𝑛𝑛𝑛𝑛,   ∀  0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇,         (25) 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠|𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 = 𝑛𝑛) = 𝜎𝜎2(𝑡𝑡 − 𝑠𝑠) + 𝑛𝑛𝑛𝑛,   ∀  0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇,              (26) 

𝑓𝑓(𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠; 𝜇𝜇, 𝜎𝜎, 𝑛𝑛, 𝑛𝑛|𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 = 𝑛𝑛) =
1

√2𝜋𝜋√𝜎𝜎2(𝑡𝑡 − 𝑠𝑠) + 𝑛𝑛𝑛𝑛
𝑒𝑒
−12
{ 
 
  [𝑋𝑋𝑡𝑡−𝑋𝑋𝑠𝑠−(𝜇𝜇−

𝜎𝜎2
2 )(𝑡𝑡−𝑠𝑠)−𝑛𝑛𝑛𝑛]

2

𝜎𝜎2(𝑡𝑡−𝑠𝑠)+𝑛𝑛𝜂𝜂
} 
 
  

,

∀  0 ≤ 𝑠𝑠 < 𝑡𝑡 ≤ 𝑇𝑇.      (27) 

Now, considering that the probability that the Poisson random variable 𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 takes 

the value 𝑛𝑛 is given by the Poisson distribution with parameter 𝜆𝜆(𝑡𝑡 − 𝑠𝑠): 

ℙ[𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 = 𝑛𝑛] =
[𝜆𝜆(𝑡𝑡 − 𝑠𝑠)]𝑛𝑛𝑒𝑒−[𝜆𝜆(𝑡𝑡−𝑠𝑠)]

𝑛𝑛! ,                                       (28) 

then, the probability density function of the independent and stationary increment or 

logarithmic return 𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠 as a whole is given by an infinite sum (the Poisson random 

variable can have infinite discrete values) that starts at 0 (the Poisson random variable has 

a support that starts at zero), where each term is a multiplication of the probability of the 

random variable 𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠 conditioned on a defined number of jumps 𝑛𝑛, multiplied by the 

probability mass function that the Poisson random variable 𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑠𝑠 takes that number of 

jumps 𝑛𝑛 (Bayes rule) in the following way:  

 takes that number of jumps n (Bayes rule) 
in the following way: 



36

odeon, issn: 1794-1113, e-issn: 2346-2140, N.° 24, enero-junio de 2023, pp. 25-54

𝑓𝑓[𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠; 𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂]

= ∑

{
  
 

  
 

1
√2𝜋𝜋√𝜎𝜎2(𝑡𝑡 − 𝑠𝑠) + 𝑛𝑛𝜂𝜂

𝑒𝑒
−12
{ 
 
  [𝑋𝑋𝑡𝑡−𝑋𝑋𝑠𝑠−(𝜇𝜇−

𝜎𝜎2
2 )(𝑡𝑡−𝑠𝑠)−𝑛𝑛𝑛𝑛]

2

𝜎𝜎2(𝑡𝑡−𝑠𝑠)+𝑛𝑛𝜂𝜂
} 
 
  

[𝜆𝜆(𝑡𝑡 − 𝑠𝑠)]𝑛𝑛𝑒𝑒−[𝜆𝜆(𝑡𝑡−𝑠𝑠)]
𝑛𝑛!

}
  
 

  
 

, ∀  0 ≤ 𝑠𝑠
∞

𝑛𝑛=0

< 𝑡𝑡 ≤ 𝑇𝑇.           (29) 

 

where we can see that the distribution is a Gaussian mixture where mixture weights are 

given by the Poisson random variables (Honoré, 1998).  

We proceed to discretize the process as in the benchmark case. Therefore, we can 

express equation (23) as:  

Δ𝑋𝑋𝑖𝑖 = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖 + ∑ 𝑌𝑌𝑘𝑘

𝑁𝑁𝑡𝑡𝑖𝑖−𝑁𝑁𝑡𝑡𝑖𝑖−1

𝑘𝑘=1
,   ∀ 𝑖𝑖 = 1,2, … ,𝒩𝒩.            (30) 

Again, by conditioning 𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 to any number of jumps 𝑛𝑛 we have: 

Δ𝑋𝑋𝑖𝑖 = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖 +∑𝑌𝑌𝑘𝑘

𝑛𝑛

𝑘𝑘=1
,   ∀ 𝑖𝑖 = 1,2, … ,𝒩𝒩.                (31) 

From equation (31), where 𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 = 𝑛𝑛, we can see that the process {Δ𝑋𝑋𝑖𝑖}𝑖𝑖=1𝑁𝑁  is an 

IID process, such that any logarithmic return has an expected value, variance, and 

Gaussian density given by: 

𝐸𝐸(Δ𝑋𝑋𝑖𝑖|𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 = 𝑛𝑛) = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝛽𝛽𝑛𝑛,   ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩,                        (32) 

𝑉𝑉𝑉𝑉𝑉𝑉(Δ𝑋𝑋𝑖𝑖|𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 = 𝑛𝑛) = 𝜎𝜎2Δ𝑡𝑡 + 𝜂𝜂𝑛𝑛,   ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩,                        (33) 

 

where we can see that the distribution is a Gaussian mixture where mixture 
weights are given by the Poisson random variables (Honoré, 1998). 

We proceed to discretize the process as in the benchmark case. Therefore, 
we can express equation (23) as: 

𝑓𝑓[𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠; 𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂]

= ∑

{
  
 

  
 

1
√2𝜋𝜋√𝜎𝜎2(𝑡𝑡 − 𝑠𝑠) + 𝑛𝑛𝜂𝜂

𝑒𝑒
−12
{ 
 
  [𝑋𝑋𝑡𝑡−𝑋𝑋𝑠𝑠−(𝜇𝜇−

𝜎𝜎2
2 )(𝑡𝑡−𝑠𝑠)−𝑛𝑛𝑛𝑛]

2

𝜎𝜎2(𝑡𝑡−𝑠𝑠)+𝑛𝑛𝜂𝜂
} 
 
  

[𝜆𝜆(𝑡𝑡 − 𝑠𝑠)]𝑛𝑛𝑒𝑒−[𝜆𝜆(𝑡𝑡−𝑠𝑠)]
𝑛𝑛!

}
  
 

  
 

, ∀  0 ≤ 𝑠𝑠
∞

𝑛𝑛=0

< 𝑡𝑡 ≤ 𝑇𝑇.           (29) 

 

where we can see that the distribution is a Gaussian mixture where mixture weights are 

given by the Poisson random variables (Honoré, 1998).  

We proceed to discretize the process as in the benchmark case. Therefore, we can 

express equation (23) as:  

Δ𝑋𝑋𝑖𝑖 = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖 + ∑ 𝑌𝑌𝑘𝑘

𝑁𝑁𝑡𝑡𝑖𝑖−𝑁𝑁𝑡𝑡𝑖𝑖−1

𝑘𝑘=1
,   ∀ 𝑖𝑖 = 1,2, … ,𝒩𝒩.            (30) 

Again, by conditioning 𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 to any number of jumps 𝑛𝑛 we have: 

Δ𝑋𝑋𝑖𝑖 = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖 +∑𝑌𝑌𝑘𝑘

𝑛𝑛

𝑘𝑘=1
,   ∀ 𝑖𝑖 = 1,2, … ,𝒩𝒩.                (31) 

From equation (31), where 𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 = 𝑛𝑛, we can see that the process {Δ𝑋𝑋𝑖𝑖}𝑖𝑖=1𝑁𝑁  is an 

IID process, such that any logarithmic return has an expected value, variance, and 

Gaussian density given by: 

𝐸𝐸(Δ𝑋𝑋𝑖𝑖|𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 = 𝑛𝑛) = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝛽𝛽𝑛𝑛,   ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩,                        (32) 

𝑉𝑉𝑉𝑉𝑉𝑉(Δ𝑋𝑋𝑖𝑖|𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 = 𝑛𝑛) = 𝜎𝜎2Δ𝑡𝑡 + 𝜂𝜂𝑛𝑛,   ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩,                        (33) 

 

Again, by conditioning 

𝑓𝑓[𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠; 𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂]

= ∑

{
  
 

  
 

1
√2𝜋𝜋√𝜎𝜎2(𝑡𝑡 − 𝑠𝑠) + 𝑛𝑛𝜂𝜂

𝑒𝑒
−12
{ 
 
  [𝑋𝑋𝑡𝑡−𝑋𝑋𝑠𝑠−(𝜇𝜇−

𝜎𝜎2
2 )(𝑡𝑡−𝑠𝑠)−𝑛𝑛𝑛𝑛]

2

𝜎𝜎2(𝑡𝑡−𝑠𝑠)+𝑛𝑛𝜂𝜂
} 
 
  

[𝜆𝜆(𝑡𝑡 − 𝑠𝑠)]𝑛𝑛𝑒𝑒−[𝜆𝜆(𝑡𝑡−𝑠𝑠)]
𝑛𝑛!

}
  
 

  
 

, ∀  0 ≤ 𝑠𝑠
∞

𝑛𝑛=0

< 𝑡𝑡 ≤ 𝑇𝑇.           (29) 

 

where we can see that the distribution is a Gaussian mixture where mixture weights are 

given by the Poisson random variables (Honoré, 1998).  

We proceed to discretize the process as in the benchmark case. Therefore, we can 

express equation (23) as:  

Δ𝑋𝑋𝑖𝑖 = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖 + ∑ 𝑌𝑌𝑘𝑘

𝑁𝑁𝑡𝑡𝑖𝑖−𝑁𝑁𝑡𝑡𝑖𝑖−1

𝑘𝑘=1
,   ∀ 𝑖𝑖 = 1,2, … ,𝒩𝒩.            (30) 

Again, by conditioning 𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 to any number of jumps 𝑛𝑛 we have: 

Δ𝑋𝑋𝑖𝑖 = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖 +∑𝑌𝑌𝑘𝑘

𝑛𝑛

𝑘𝑘=1
,   ∀ 𝑖𝑖 = 1,2, … ,𝒩𝒩.                (31) 

From equation (31), where 𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 = 𝑛𝑛, we can see that the process {Δ𝑋𝑋𝑖𝑖}𝑖𝑖=1𝑁𝑁  is an 

IID process, such that any logarithmic return has an expected value, variance, and 

Gaussian density given by: 

𝐸𝐸(Δ𝑋𝑋𝑖𝑖|𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 = 𝑛𝑛) = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝛽𝛽𝑛𝑛,   ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩,                        (32) 

𝑉𝑉𝑉𝑉𝑉𝑉(Δ𝑋𝑋𝑖𝑖|𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 = 𝑛𝑛) = 𝜎𝜎2Δ𝑡𝑡 + 𝜂𝜂𝑛𝑛,   ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩,                        (33) 

 

 to any number of jumps n we have:

𝑓𝑓[𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠; 𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂]

= ∑

{
  
 

  
 

1
√2𝜋𝜋√𝜎𝜎2(𝑡𝑡 − 𝑠𝑠) + 𝑛𝑛𝜂𝜂

𝑒𝑒
−12
{ 
 
  [𝑋𝑋𝑡𝑡−𝑋𝑋𝑠𝑠−(𝜇𝜇−

𝜎𝜎2
2 )(𝑡𝑡−𝑠𝑠)−𝑛𝑛𝑛𝑛]

2

𝜎𝜎2(𝑡𝑡−𝑠𝑠)+𝑛𝑛𝜂𝜂
} 
 
  

[𝜆𝜆(𝑡𝑡 − 𝑠𝑠)]𝑛𝑛𝑒𝑒−[𝜆𝜆(𝑡𝑡−𝑠𝑠)]
𝑛𝑛!

}
  
 

  
 

, ∀  0 ≤ 𝑠𝑠
∞

𝑛𝑛=0

< 𝑡𝑡 ≤ 𝑇𝑇.           (29) 

 

where we can see that the distribution is a Gaussian mixture where mixture weights are 

given by the Poisson random variables (Honoré, 1998).  

We proceed to discretize the process as in the benchmark case. Therefore, we can 

express equation (23) as:  

Δ𝑋𝑋𝑖𝑖 = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖 + ∑ 𝑌𝑌𝑘𝑘

𝑁𝑁𝑡𝑡𝑖𝑖−𝑁𝑁𝑡𝑡𝑖𝑖−1

𝑘𝑘=1
,   ∀ 𝑖𝑖 = 1,2, … ,𝒩𝒩.            (30) 

Again, by conditioning 𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 to any number of jumps 𝑛𝑛 we have: 

Δ𝑋𝑋𝑖𝑖 = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖 +∑𝑌𝑌𝑘𝑘

𝑛𝑛

𝑘𝑘=1
,   ∀ 𝑖𝑖 = 1,2, … ,𝒩𝒩.                (31) 

From equation (31), where 𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 = 𝑛𝑛, we can see that the process {Δ𝑋𝑋𝑖𝑖}𝑖𝑖=1𝑁𝑁  is an 

IID process, such that any logarithmic return has an expected value, variance, and 

Gaussian density given by: 

𝐸𝐸(Δ𝑋𝑋𝑖𝑖|𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 = 𝑛𝑛) = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝛽𝛽𝑛𝑛,   ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩,                        (32) 

𝑉𝑉𝑉𝑉𝑉𝑉(Δ𝑋𝑋𝑖𝑖|𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 = 𝑛𝑛) = 𝜎𝜎2Δ𝑡𝑡 + 𝜂𝜂𝑛𝑛,   ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩,                        (33) 

 

From equation (31), where 

𝑓𝑓[𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠; 𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂]

= ∑

{
  
 

  
 

1
√2𝜋𝜋√𝜎𝜎2(𝑡𝑡 − 𝑠𝑠) + 𝑛𝑛𝜂𝜂

𝑒𝑒
−12
{ 
 
  [𝑋𝑋𝑡𝑡−𝑋𝑋𝑠𝑠−(𝜇𝜇−

𝜎𝜎2
2 )(𝑡𝑡−𝑠𝑠)−𝑛𝑛𝑛𝑛]

2

𝜎𝜎2(𝑡𝑡−𝑠𝑠)+𝑛𝑛𝜂𝜂
} 
 
  

[𝜆𝜆(𝑡𝑡 − 𝑠𝑠)]𝑛𝑛𝑒𝑒−[𝜆𝜆(𝑡𝑡−𝑠𝑠)]
𝑛𝑛!

}
  
 

  
 

, ∀  0 ≤ 𝑠𝑠
∞

𝑛𝑛=0

< 𝑡𝑡 ≤ 𝑇𝑇.           (29) 

 

where we can see that the distribution is a Gaussian mixture where mixture weights are 

given by the Poisson random variables (Honoré, 1998).  

We proceed to discretize the process as in the benchmark case. Therefore, we can 

express equation (23) as:  

Δ𝑋𝑋𝑖𝑖 = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖 + ∑ 𝑌𝑌𝑘𝑘

𝑁𝑁𝑡𝑡𝑖𝑖−𝑁𝑁𝑡𝑡𝑖𝑖−1

𝑘𝑘=1
,   ∀ 𝑖𝑖 = 1,2, … ,𝒩𝒩.            (30) 

Again, by conditioning 𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 to any number of jumps 𝑛𝑛 we have: 

Δ𝑋𝑋𝑖𝑖 = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖 +∑𝑌𝑌𝑘𝑘

𝑛𝑛

𝑘𝑘=1
,   ∀ 𝑖𝑖 = 1,2, … ,𝒩𝒩.                (31) 

From equation (31), where 𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 = 𝑛𝑛, we can see that the process {Δ𝑋𝑋𝑖𝑖}𝑖𝑖=1𝑁𝑁  is an 

IID process, such that any logarithmic return has an expected value, variance, and 

Gaussian density given by: 

𝐸𝐸(Δ𝑋𝑋𝑖𝑖|𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 = 𝑛𝑛) = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝛽𝛽𝑛𝑛,   ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩,                        (32) 

𝑉𝑉𝑉𝑉𝑉𝑉(Δ𝑋𝑋𝑖𝑖|𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 = 𝑛𝑛) = 𝜎𝜎2Δ𝑡𝑡 + 𝜂𝜂𝑛𝑛,   ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩,                        (33) 

 

 we can see that the process 

𝑓𝑓[𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠; 𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂]

= ∑

{
  
 

  
 

1
√2𝜋𝜋√𝜎𝜎2(𝑡𝑡 − 𝑠𝑠) + 𝑛𝑛𝜂𝜂

𝑒𝑒
−12
{ 
 
  [𝑋𝑋𝑡𝑡−𝑋𝑋𝑠𝑠−(𝜇𝜇−

𝜎𝜎2
2 )(𝑡𝑡−𝑠𝑠)−𝑛𝑛𝑛𝑛]

2

𝜎𝜎2(𝑡𝑡−𝑠𝑠)+𝑛𝑛𝜂𝜂
} 
 
  

[𝜆𝜆(𝑡𝑡 − 𝑠𝑠)]𝑛𝑛𝑒𝑒−[𝜆𝜆(𝑡𝑡−𝑠𝑠)]
𝑛𝑛!

}
  
 

  
 

, ∀  0 ≤ 𝑠𝑠
∞

𝑛𝑛=0

< 𝑡𝑡 ≤ 𝑇𝑇.           (29) 

 

where we can see that the distribution is a Gaussian mixture where mixture weights are 

given by the Poisson random variables (Honoré, 1998).  

We proceed to discretize the process as in the benchmark case. Therefore, we can 

express equation (23) as:  

Δ𝑋𝑋𝑖𝑖 = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖 + ∑ 𝑌𝑌𝑘𝑘

𝑁𝑁𝑡𝑡𝑖𝑖−𝑁𝑁𝑡𝑡𝑖𝑖−1

𝑘𝑘=1
,   ∀ 𝑖𝑖 = 1,2, … ,𝒩𝒩.            (30) 

Again, by conditioning 𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 to any number of jumps 𝑛𝑛 we have: 

Δ𝑋𝑋𝑖𝑖 = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖 +∑𝑌𝑌𝑘𝑘

𝑛𝑛

𝑘𝑘=1
,   ∀ 𝑖𝑖 = 1,2, … ,𝒩𝒩.                (31) 

From equation (31), where 𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 = 𝑛𝑛, we can see that the process {Δ𝑋𝑋𝑖𝑖}𝑖𝑖=1𝑁𝑁  is an 

IID process, such that any logarithmic return has an expected value, variance, and 

Gaussian density given by: 

𝐸𝐸(Δ𝑋𝑋𝑖𝑖|𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 = 𝑛𝑛) = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝛽𝛽𝑛𝑛,   ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩,                        (32) 

𝑉𝑉𝑉𝑉𝑉𝑉(Δ𝑋𝑋𝑖𝑖|𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 = 𝑛𝑛) = 𝜎𝜎2Δ𝑡𝑡 + 𝜂𝜂𝑛𝑛,   ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩,                        (33) 

 

 
is an IID process, such that any logarithmic return has an expected value, vari-
ance, and Gaussian density given by:

𝑓𝑓[𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠; 𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂]

= ∑

{
  
 

  
 

1
√2𝜋𝜋√𝜎𝜎2(𝑡𝑡 − 𝑠𝑠) + 𝑛𝑛𝜂𝜂

𝑒𝑒
−12
{ 
 
  [𝑋𝑋𝑡𝑡−𝑋𝑋𝑠𝑠−(𝜇𝜇−

𝜎𝜎2
2 )(𝑡𝑡−𝑠𝑠)−𝑛𝑛𝑛𝑛]

2

𝜎𝜎2(𝑡𝑡−𝑠𝑠)+𝑛𝑛𝜂𝜂
} 
 
  

[𝜆𝜆(𝑡𝑡 − 𝑠𝑠)]𝑛𝑛𝑒𝑒−[𝜆𝜆(𝑡𝑡−𝑠𝑠)]
𝑛𝑛!

}
  
 

  
 

, ∀  0 ≤ 𝑠𝑠
∞

𝑛𝑛=0

< 𝑡𝑡 ≤ 𝑇𝑇.           (29) 

 

where we can see that the distribution is a Gaussian mixture where mixture weights are 

given by the Poisson random variables (Honoré, 1998).  

We proceed to discretize the process as in the benchmark case. Therefore, we can 

express equation (23) as:  

Δ𝑋𝑋𝑖𝑖 = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖 + ∑ 𝑌𝑌𝑘𝑘

𝑁𝑁𝑡𝑡𝑖𝑖−𝑁𝑁𝑡𝑡𝑖𝑖−1

𝑘𝑘=1
,   ∀ 𝑖𝑖 = 1,2, … ,𝒩𝒩.            (30) 

Again, by conditioning 𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 to any number of jumps 𝑛𝑛 we have: 

Δ𝑋𝑋𝑖𝑖 = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝜎𝜎√Δ𝑡𝑡𝜀𝜀𝑖𝑖 +∑𝑌𝑌𝑘𝑘

𝑛𝑛

𝑘𝑘=1
,   ∀ 𝑖𝑖 = 1,2, … ,𝒩𝒩.                (31) 

From equation (31), where 𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 = 𝑛𝑛, we can see that the process {Δ𝑋𝑋𝑖𝑖}𝑖𝑖=1𝑁𝑁  is an 

IID process, such that any logarithmic return has an expected value, variance, and 

Gaussian density given by: 

𝐸𝐸(Δ𝑋𝑋𝑖𝑖|𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 = 𝑛𝑛) = (𝜇𝜇 −
𝜎𝜎2
2 )Δ𝑡𝑡 + 𝛽𝛽𝑛𝑛,   ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩,                        (32) 

𝑉𝑉𝑉𝑉𝑉𝑉(Δ𝑋𝑋𝑖𝑖|𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 = 𝑛𝑛) = 𝜎𝜎2Δ𝑡𝑡 + 𝜂𝜂𝑛𝑛,   ∀  𝑖𝑖 = 1,2,… ,𝒩𝒩,                        (33) 

 

𝑓𝑓(Δ𝑋𝑋𝑖𝑖; 𝜇𝜇, 𝜎𝜎, 𝛽𝛽, 𝜂𝜂|𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 = 𝑛𝑛) =
1

√2𝜋𝜋√𝜎𝜎2Δ𝑡𝑡 + 𝑛𝑛𝜂𝜂
𝑒𝑒
−12
{ 
 
  [Δ𝑋𝑋𝑖𝑖−(𝜇𝜇−

𝜎𝜎2
2 )Δ𝑡𝑡−𝑛𝑛𝑛𝑛]

2

𝜎𝜎2Δ𝑡𝑡+𝑛𝑛𝑛𝑛
} 
 
  

, ∀  𝑖𝑖

= 1,2,… ,𝒩𝒩.  (34) 

Now, considering again that the probability that the Poisson random variable 𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 

takes the value 𝑛𝑛 is given by the Poisson distribution with parameter 𝜆𝜆(𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1) = 𝜆𝜆Δ𝑡𝑡: 

ℙ[𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 = 𝑛𝑛] =
(𝜆𝜆𝜆𝜆𝑡𝑡)𝑛𝑛𝑒𝑒−(𝜆𝜆𝜆𝜆𝑡𝑡)

𝑛𝑛! ,                                          (35) 

then, the probability density function of the IID discretized logarithmic return as a whole 

is given by an infinite sum that starts at 0, where each term is a multiplication of the 

probability of the random variable Δ𝑋𝑋𝑖𝑖 , conditioned on a defined number of jumps 𝑛𝑛, 

multiplied by the probability mass function that the Poisson random variable 𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 

takes that number of jumps 𝑛𝑛 (Bayes rule):  

𝑓𝑓(Δ𝑋𝑋𝑖𝑖;  𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂) = ∑

{
  
 

  
 

1
√2𝜋𝜋√𝜎𝜎2Δ𝑡𝑡 + 𝑛𝑛𝜂𝜂

𝑒𝑒
−12
{ 
 
  [Δ𝑋𝑋𝑖𝑖−(𝜇𝜇−

𝜎𝜎2
2 )Δ𝑡𝑡−𝑛𝑛𝑛𝑛]

2

𝜎𝜎2Δ𝑡𝑡+𝑛𝑛𝑛𝑛
} 
 
  

(𝜆𝜆Δ𝑡𝑡)𝑛𝑛𝑒𝑒−(𝜆𝜆Δ𝑡𝑡)
𝑛𝑛!

}
  
 

  
 

∞

𝑛𝑛=0
,

∀  𝑖𝑖 = 1,2, … ,𝒩𝒩.      (36) 

Equations (32), (33), (34), (35), and (36) are consistent with equations (25), (26), (27), 

(28), and (29) respectively in a discretized framework.    

To obtain the asymptotic variance of the estimator �̂�𝜇 we might try to firstly employ the 

maximum likelihood method. Therefore, given the 𝒩𝒩 observations, we proceed to 

formulate the joint likelihood function ℒ( 𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂) based on equation (36):   

ℒ( 𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂) =∏𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; Δ𝑋𝑋𝑖𝑖)
𝒩𝒩

𝑖𝑖=1
                                        (37) 
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Now, considering again that the probability that the Poisson random variable 

𝑓𝑓(Δ𝑋𝑋𝑖𝑖; 𝜇𝜇, 𝜎𝜎, 𝛽𝛽, 𝜂𝜂|𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 = 𝑛𝑛) =
1

√2𝜋𝜋√𝜎𝜎2Δ𝑡𝑡 + 𝑛𝑛𝜂𝜂
𝑒𝑒
−12
{ 
 
  [Δ𝑋𝑋𝑖𝑖−(𝜇𝜇−

𝜎𝜎2
2 )Δ𝑡𝑡−𝑛𝑛𝑛𝑛]

2

𝜎𝜎2Δ𝑡𝑡+𝑛𝑛𝑛𝑛
} 
 
  

, ∀  𝑖𝑖

= 1,2,… ,𝒩𝒩.  (34) 

Now, considering again that the probability that the Poisson random variable 𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 

takes the value 𝑛𝑛 is given by the Poisson distribution with parameter 𝜆𝜆(𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1) = 𝜆𝜆Δ𝑡𝑡: 

ℙ[𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 = 𝑛𝑛] =
(𝜆𝜆𝜆𝜆𝑡𝑡)𝑛𝑛𝑒𝑒−(𝜆𝜆𝜆𝜆𝑡𝑡)

𝑛𝑛! ,                                          (35) 

then, the probability density function of the IID discretized logarithmic return as a whole 

is given by an infinite sum that starts at 0, where each term is a multiplication of the 

probability of the random variable Δ𝑋𝑋𝑖𝑖 , conditioned on a defined number of jumps 𝑛𝑛, 

multiplied by the probability mass function that the Poisson random variable 𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 

takes that number of jumps 𝑛𝑛 (Bayes rule):  

𝑓𝑓(Δ𝑋𝑋𝑖𝑖;  𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂) = ∑

{
  
 

  
 

1
√2𝜋𝜋√𝜎𝜎2Δ𝑡𝑡 + 𝑛𝑛𝜂𝜂

𝑒𝑒
−12
{ 
 
  [Δ𝑋𝑋𝑖𝑖−(𝜇𝜇−

𝜎𝜎2
2 )Δ𝑡𝑡−𝑛𝑛𝑛𝑛]

2

𝜎𝜎2Δ𝑡𝑡+𝑛𝑛𝑛𝑛
} 
 
  

(𝜆𝜆Δ𝑡𝑡)𝑛𝑛𝑒𝑒−(𝜆𝜆Δ𝑡𝑡)
𝑛𝑛!

}
  
 

  
 

∞

𝑛𝑛=0
,

∀  𝑖𝑖 = 1,2, … ,𝒩𝒩.      (36) 

Equations (32), (33), (34), (35), and (36) are consistent with equations (25), (26), (27), 

(28), and (29) respectively in a discretized framework.    

To obtain the asymptotic variance of the estimator �̂�𝜇 we might try to firstly employ the 

maximum likelihood method. Therefore, given the 𝒩𝒩 observations, we proceed to 

formulate the joint likelihood function ℒ( 𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂) based on equation (36):   

ℒ( 𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂) =∏𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; Δ𝑋𝑋𝑖𝑖)
𝒩𝒩

𝑖𝑖=1
                                        (37) 

 

 takes the value n is given by the Poisson distribution with parameter 

𝑓𝑓(Δ𝑋𝑋𝑖𝑖; 𝜇𝜇, 𝜎𝜎, 𝛽𝛽, 𝜂𝜂|𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 = 𝑛𝑛) =
1

√2𝜋𝜋√𝜎𝜎2Δ𝑡𝑡 + 𝑛𝑛𝜂𝜂
𝑒𝑒
−12
{ 
 
  [Δ𝑋𝑋𝑖𝑖−(𝜇𝜇−

𝜎𝜎2
2 )Δ𝑡𝑡−𝑛𝑛𝑛𝑛]

2

𝜎𝜎2Δ𝑡𝑡+𝑛𝑛𝑛𝑛
} 
 
  

, ∀  𝑖𝑖

= 1,2,… ,𝒩𝒩.  (34) 

Now, considering again that the probability that the Poisson random variable 𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 

takes the value 𝑛𝑛 is given by the Poisson distribution with parameter 𝜆𝜆(𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1) = 𝜆𝜆Δ𝑡𝑡: 

ℙ[𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 = 𝑛𝑛] =
(𝜆𝜆𝜆𝜆𝑡𝑡)𝑛𝑛𝑒𝑒−(𝜆𝜆𝜆𝜆𝑡𝑡)

𝑛𝑛! ,                                          (35) 

then, the probability density function of the IID discretized logarithmic return as a whole 

is given by an infinite sum that starts at 0, where each term is a multiplication of the 

probability of the random variable Δ𝑋𝑋𝑖𝑖 , conditioned on a defined number of jumps 𝑛𝑛, 

multiplied by the probability mass function that the Poisson random variable 𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 

takes that number of jumps 𝑛𝑛 (Bayes rule):  

𝑓𝑓(Δ𝑋𝑋𝑖𝑖;  𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂) = ∑

{
  
 

  
 

1
√2𝜋𝜋√𝜎𝜎2Δ𝑡𝑡 + 𝑛𝑛𝜂𝜂

𝑒𝑒
−12
{ 
 
  [Δ𝑋𝑋𝑖𝑖−(𝜇𝜇−

𝜎𝜎2
2 )Δ𝑡𝑡−𝑛𝑛𝑛𝑛]

2

𝜎𝜎2Δ𝑡𝑡+𝑛𝑛𝑛𝑛
} 
 
  

(𝜆𝜆Δ𝑡𝑡)𝑛𝑛𝑒𝑒−(𝜆𝜆Δ𝑡𝑡)
𝑛𝑛!

}
  
 

  
 

∞

𝑛𝑛=0
,

∀  𝑖𝑖 = 1,2, … ,𝒩𝒩.      (36) 

Equations (32), (33), (34), (35), and (36) are consistent with equations (25), (26), (27), 

(28), and (29) respectively in a discretized framework.    

To obtain the asymptotic variance of the estimator �̂�𝜇 we might try to firstly employ the 

maximum likelihood method. Therefore, given the 𝒩𝒩 observations, we proceed to 

formulate the joint likelihood function ℒ( 𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂) based on equation (36):   

ℒ( 𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂) =∏𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; Δ𝑋𝑋𝑖𝑖)
𝒩𝒩

𝑖𝑖=1
                                        (37) 

 

:

𝑓𝑓(Δ𝑋𝑋𝑖𝑖; 𝜇𝜇, 𝜎𝜎, 𝛽𝛽, 𝜂𝜂|𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 = 𝑛𝑛) =
1

√2𝜋𝜋√𝜎𝜎2Δ𝑡𝑡 + 𝑛𝑛𝜂𝜂
𝑒𝑒
−12
{ 
 
  [Δ𝑋𝑋𝑖𝑖−(𝜇𝜇−

𝜎𝜎2
2 )Δ𝑡𝑡−𝑛𝑛𝑛𝑛]

2

𝜎𝜎2Δ𝑡𝑡+𝑛𝑛𝑛𝑛
} 
 
  

, ∀  𝑖𝑖

= 1,2,… ,𝒩𝒩.  (34) 

Now, considering again that the probability that the Poisson random variable 𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 

takes the value 𝑛𝑛 is given by the Poisson distribution with parameter 𝜆𝜆(𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1) = 𝜆𝜆Δ𝑡𝑡: 

ℙ[𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 = 𝑛𝑛] =
(𝜆𝜆𝜆𝜆𝑡𝑡)𝑛𝑛𝑒𝑒−(𝜆𝜆𝜆𝜆𝑡𝑡)

𝑛𝑛! ,                                          (35) 

then, the probability density function of the IID discretized logarithmic return as a whole 

is given by an infinite sum that starts at 0, where each term is a multiplication of the 

probability of the random variable Δ𝑋𝑋𝑖𝑖 , conditioned on a defined number of jumps 𝑛𝑛, 

multiplied by the probability mass function that the Poisson random variable 𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 

takes that number of jumps 𝑛𝑛 (Bayes rule):  

𝑓𝑓(Δ𝑋𝑋𝑖𝑖;  𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂) = ∑

{
  
 

  
 

1
√2𝜋𝜋√𝜎𝜎2Δ𝑡𝑡 + 𝑛𝑛𝜂𝜂

𝑒𝑒
−12
{ 
 
  [Δ𝑋𝑋𝑖𝑖−(𝜇𝜇−

𝜎𝜎2
2 )Δ𝑡𝑡−𝑛𝑛𝑛𝑛]

2

𝜎𝜎2Δ𝑡𝑡+𝑛𝑛𝑛𝑛
} 
 
  

(𝜆𝜆Δ𝑡𝑡)𝑛𝑛𝑒𝑒−(𝜆𝜆Δ𝑡𝑡)
𝑛𝑛!

}
  
 

  
 

∞

𝑛𝑛=0
,

∀  𝑖𝑖 = 1,2, … ,𝒩𝒩.      (36) 

Equations (32), (33), (34), (35), and (36) are consistent with equations (25), (26), (27), 

(28), and (29) respectively in a discretized framework.    

To obtain the asymptotic variance of the estimator �̂�𝜇 we might try to firstly employ the 

maximum likelihood method. Therefore, given the 𝒩𝒩 observations, we proceed to 

formulate the joint likelihood function ℒ( 𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂) based on equation (36):   

ℒ( 𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂) =∏𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; Δ𝑋𝑋𝑖𝑖)
𝒩𝒩

𝑖𝑖=1
                                        (37) 

 

then, the probability density function of the IID discretized logarithmic return 
as a whole is given by an infinite sum that starts at 0, where each term is a 
multiplication of the probability of the random variable 

𝑓𝑓(Δ𝑋𝑋𝑖𝑖; 𝜇𝜇, 𝜎𝜎, 𝛽𝛽, 𝜂𝜂|𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 = 𝑛𝑛) =
1

√2𝜋𝜋√𝜎𝜎2Δ𝑡𝑡 + 𝑛𝑛𝜂𝜂
𝑒𝑒
−12
{ 
 
  [Δ𝑋𝑋𝑖𝑖−(𝜇𝜇−

𝜎𝜎2
2 )Δ𝑡𝑡−𝑛𝑛𝑛𝑛]

2

𝜎𝜎2Δ𝑡𝑡+𝑛𝑛𝑛𝑛
} 
 
  

, ∀  𝑖𝑖

= 1,2,… ,𝒩𝒩.  (34) 

Now, considering again that the probability that the Poisson random variable 𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 

takes the value 𝑛𝑛 is given by the Poisson distribution with parameter 𝜆𝜆(𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1) = 𝜆𝜆Δ𝑡𝑡: 

ℙ[𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 = 𝑛𝑛] =
(𝜆𝜆𝜆𝜆𝑡𝑡)𝑛𝑛𝑒𝑒−(𝜆𝜆𝜆𝜆𝑡𝑡)

𝑛𝑛! ,                                          (35) 

then, the probability density function of the IID discretized logarithmic return as a whole 

is given by an infinite sum that starts at 0, where each term is a multiplication of the 

probability of the random variable Δ𝑋𝑋𝑖𝑖 , conditioned on a defined number of jumps 𝑛𝑛, 

multiplied by the probability mass function that the Poisson random variable 𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 

takes that number of jumps 𝑛𝑛 (Bayes rule):  

𝑓𝑓(Δ𝑋𝑋𝑖𝑖;  𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂) = ∑

{
  
 

  
 

1
√2𝜋𝜋√𝜎𝜎2Δ𝑡𝑡 + 𝑛𝑛𝜂𝜂

𝑒𝑒
−12
{ 
 
  [Δ𝑋𝑋𝑖𝑖−(𝜇𝜇−

𝜎𝜎2
2 )Δ𝑡𝑡−𝑛𝑛𝑛𝑛]

2

𝜎𝜎2Δ𝑡𝑡+𝑛𝑛𝑛𝑛
} 
 
  

(𝜆𝜆Δ𝑡𝑡)𝑛𝑛𝑒𝑒−(𝜆𝜆Δ𝑡𝑡)
𝑛𝑛!

}
  
 

  
 

∞

𝑛𝑛=0
,

∀  𝑖𝑖 = 1,2, … ,𝒩𝒩.      (36) 

Equations (32), (33), (34), (35), and (36) are consistent with equations (25), (26), (27), 

(28), and (29) respectively in a discretized framework.    

To obtain the asymptotic variance of the estimator �̂�𝜇 we might try to firstly employ the 

maximum likelihood method. Therefore, given the 𝒩𝒩 observations, we proceed to 

formulate the joint likelihood function ℒ( 𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂) based on equation (36):   

ℒ( 𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂) =∏𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; Δ𝑋𝑋𝑖𝑖)
𝒩𝒩

𝑖𝑖=1
                                        (37) 

 

, conditioned on a 
defined number of jumps n, multiplied by the probability mass function that the 
Poisson random variable 

𝑓𝑓(Δ𝑋𝑋𝑖𝑖; 𝜇𝜇, 𝜎𝜎, 𝛽𝛽, 𝜂𝜂|𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 = 𝑛𝑛) =
1

√2𝜋𝜋√𝜎𝜎2Δ𝑡𝑡 + 𝑛𝑛𝜂𝜂
𝑒𝑒
−12
{ 
 
  [Δ𝑋𝑋𝑖𝑖−(𝜇𝜇−

𝜎𝜎2
2 )Δ𝑡𝑡−𝑛𝑛𝑛𝑛]

2

𝜎𝜎2Δ𝑡𝑡+𝑛𝑛𝑛𝑛
} 
 
  

, ∀  𝑖𝑖

= 1,2,… ,𝒩𝒩.  (34) 

Now, considering again that the probability that the Poisson random variable 𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 

takes the value 𝑛𝑛 is given by the Poisson distribution with parameter 𝜆𝜆(𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1) = 𝜆𝜆Δ𝑡𝑡: 

ℙ[𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 = 𝑛𝑛] =
(𝜆𝜆𝜆𝜆𝑡𝑡)𝑛𝑛𝑒𝑒−(𝜆𝜆𝜆𝜆𝑡𝑡)

𝑛𝑛! ,                                          (35) 

then, the probability density function of the IID discretized logarithmic return as a whole 

is given by an infinite sum that starts at 0, where each term is a multiplication of the 

probability of the random variable Δ𝑋𝑋𝑖𝑖 , conditioned on a defined number of jumps 𝑛𝑛, 

multiplied by the probability mass function that the Poisson random variable 𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 

takes that number of jumps 𝑛𝑛 (Bayes rule):  

𝑓𝑓(Δ𝑋𝑋𝑖𝑖;  𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂) = ∑

{
  
 

  
 

1
√2𝜋𝜋√𝜎𝜎2Δ𝑡𝑡 + 𝑛𝑛𝜂𝜂

𝑒𝑒
−12
{ 
 
  [Δ𝑋𝑋𝑖𝑖−(𝜇𝜇−

𝜎𝜎2
2 )Δ𝑡𝑡−𝑛𝑛𝑛𝑛]

2

𝜎𝜎2Δ𝑡𝑡+𝑛𝑛𝑛𝑛
} 
 
  

(𝜆𝜆Δ𝑡𝑡)𝑛𝑛𝑒𝑒−(𝜆𝜆Δ𝑡𝑡)
𝑛𝑛!

}
  
 

  
 

∞

𝑛𝑛=0
,

∀  𝑖𝑖 = 1,2, … ,𝒩𝒩.      (36) 

Equations (32), (33), (34), (35), and (36) are consistent with equations (25), (26), (27), 

(28), and (29) respectively in a discretized framework.    

To obtain the asymptotic variance of the estimator �̂�𝜇 we might try to firstly employ the 

maximum likelihood method. Therefore, given the 𝒩𝒩 observations, we proceed to 

formulate the joint likelihood function ℒ( 𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂) based on equation (36):   

ℒ( 𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂) =∏𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; Δ𝑋𝑋𝑖𝑖)
𝒩𝒩

𝑖𝑖=1
                                        (37) 

 

 takes that number of jumps n (Bayes rule): 

𝑓𝑓(Δ𝑋𝑋𝑖𝑖; 𝜇𝜇, 𝜎𝜎, 𝛽𝛽, 𝜂𝜂|𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 = 𝑛𝑛) =
1

√2𝜋𝜋√𝜎𝜎2Δ𝑡𝑡 + 𝑛𝑛𝜂𝜂
𝑒𝑒
−12
{ 
 
  [Δ𝑋𝑋𝑖𝑖−(𝜇𝜇−

𝜎𝜎2
2 )Δ𝑡𝑡−𝑛𝑛𝑛𝑛]

2

𝜎𝜎2Δ𝑡𝑡+𝑛𝑛𝑛𝑛
} 
 
  

, ∀  𝑖𝑖

= 1,2,… ,𝒩𝒩.  (34) 

Now, considering again that the probability that the Poisson random variable 𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 

takes the value 𝑛𝑛 is given by the Poisson distribution with parameter 𝜆𝜆(𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1) = 𝜆𝜆Δ𝑡𝑡: 

ℙ[𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 = 𝑛𝑛] =
(𝜆𝜆𝜆𝜆𝑡𝑡)𝑛𝑛𝑒𝑒−(𝜆𝜆𝜆𝜆𝑡𝑡)

𝑛𝑛! ,                                          (35) 

then, the probability density function of the IID discretized logarithmic return as a whole 

is given by an infinite sum that starts at 0, where each term is a multiplication of the 

probability of the random variable Δ𝑋𝑋𝑖𝑖 , conditioned on a defined number of jumps 𝑛𝑛, 

multiplied by the probability mass function that the Poisson random variable 𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 

takes that number of jumps 𝑛𝑛 (Bayes rule):  

𝑓𝑓(Δ𝑋𝑋𝑖𝑖;  𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂) = ∑

{
  
 

  
 

1
√2𝜋𝜋√𝜎𝜎2Δ𝑡𝑡 + 𝑛𝑛𝜂𝜂

𝑒𝑒
−12
{ 
 
  [Δ𝑋𝑋𝑖𝑖−(𝜇𝜇−

𝜎𝜎2
2 )Δ𝑡𝑡−𝑛𝑛𝑛𝑛]

2

𝜎𝜎2Δ𝑡𝑡+𝑛𝑛𝑛𝑛
} 
 
  

(𝜆𝜆Δ𝑡𝑡)𝑛𝑛𝑒𝑒−(𝜆𝜆Δ𝑡𝑡)
𝑛𝑛!

}
  
 

  
 

∞

𝑛𝑛=0
,

∀  𝑖𝑖 = 1,2, … ,𝒩𝒩.      (36) 

Equations (32), (33), (34), (35), and (36) are consistent with equations (25), (26), (27), 

(28), and (29) respectively in a discretized framework.    

To obtain the asymptotic variance of the estimator �̂�𝜇 we might try to firstly employ the 

maximum likelihood method. Therefore, given the 𝒩𝒩 observations, we proceed to 

formulate the joint likelihood function ℒ( 𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂) based on equation (36):   

ℒ( 𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂) =∏𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; Δ𝑋𝑋𝑖𝑖)
𝒩𝒩

𝑖𝑖=1
                                        (37) 

 

Equations (32), (33), (34), (35), and (36) are consistent with equations (25), (26), 
(27), (28), and (29) respectively in a discretized framework.   

To obtain the asymptotic variance of the estimator µ̂ we might try to firstly 
employ the maximum likelihood method. Therefore, given the 

𝑓𝑓(Δ𝑋𝑋𝑖𝑖; 𝜇𝜇, 𝜎𝜎, 𝛽𝛽, 𝜂𝜂|𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 = 𝑛𝑛) =
1

√2𝜋𝜋√𝜎𝜎2Δ𝑡𝑡 + 𝑛𝑛𝜂𝜂
𝑒𝑒
−12
{ 
 
  [Δ𝑋𝑋𝑖𝑖−(𝜇𝜇−

𝜎𝜎2
2 )Δ𝑡𝑡−𝑛𝑛𝑛𝑛]

2

𝜎𝜎2Δ𝑡𝑡+𝑛𝑛𝑛𝑛
} 
 
  

, ∀  𝑖𝑖

= 1,2,… ,𝒩𝒩.  (34) 

Now, considering again that the probability that the Poisson random variable 𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 

takes the value 𝑛𝑛 is given by the Poisson distribution with parameter 𝜆𝜆(𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1) = 𝜆𝜆Δ𝑡𝑡: 

ℙ[𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 = 𝑛𝑛] =
(𝜆𝜆𝜆𝜆𝑡𝑡)𝑛𝑛𝑒𝑒−(𝜆𝜆𝜆𝜆𝑡𝑡)

𝑛𝑛! ,                                          (35) 

then, the probability density function of the IID discretized logarithmic return as a whole 

is given by an infinite sum that starts at 0, where each term is a multiplication of the 

probability of the random variable Δ𝑋𝑋𝑖𝑖 , conditioned on a defined number of jumps 𝑛𝑛, 

multiplied by the probability mass function that the Poisson random variable 𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 

takes that number of jumps 𝑛𝑛 (Bayes rule):  

𝑓𝑓(Δ𝑋𝑋𝑖𝑖;  𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂) = ∑

{
  
 

  
 

1
√2𝜋𝜋√𝜎𝜎2Δ𝑡𝑡 + 𝑛𝑛𝜂𝜂

𝑒𝑒
−12
{ 
 
  [Δ𝑋𝑋𝑖𝑖−(𝜇𝜇−

𝜎𝜎2
2 )Δ𝑡𝑡−𝑛𝑛𝑛𝑛]

2

𝜎𝜎2Δ𝑡𝑡+𝑛𝑛𝑛𝑛
} 
 
  

(𝜆𝜆Δ𝑡𝑡)𝑛𝑛𝑒𝑒−(𝜆𝜆Δ𝑡𝑡)
𝑛𝑛!

}
  
 

  
 

∞

𝑛𝑛=0
,

∀  𝑖𝑖 = 1,2, … ,𝒩𝒩.      (36) 

Equations (32), (33), (34), (35), and (36) are consistent with equations (25), (26), (27), 

(28), and (29) respectively in a discretized framework.    

To obtain the asymptotic variance of the estimator �̂�𝜇 we might try to firstly employ the 

maximum likelihood method. Therefore, given the 𝒩𝒩 observations, we proceed to 

formulate the joint likelihood function ℒ( 𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂) based on equation (36):   

ℒ( 𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂) =∏𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; Δ𝑋𝑋𝑖𝑖)
𝒩𝒩

𝑖𝑖=1
                                        (37) 

 

 observations, 
we proceed to formulate the joint likelihood function 

𝑓𝑓(Δ𝑋𝑋𝑖𝑖; 𝜇𝜇, 𝜎𝜎, 𝛽𝛽, 𝜂𝜂|𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 = 𝑛𝑛) =
1

√2𝜋𝜋√𝜎𝜎2Δ𝑡𝑡 + 𝑛𝑛𝜂𝜂
𝑒𝑒
−12
{ 
 
  [Δ𝑋𝑋𝑖𝑖−(𝜇𝜇−

𝜎𝜎2
2 )Δ𝑡𝑡−𝑛𝑛𝑛𝑛]

2

𝜎𝜎2Δ𝑡𝑡+𝑛𝑛𝑛𝑛
} 
 
  

, ∀  𝑖𝑖

= 1,2,… ,𝒩𝒩.  (34) 

Now, considering again that the probability that the Poisson random variable 𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 

takes the value 𝑛𝑛 is given by the Poisson distribution with parameter 𝜆𝜆(𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1) = 𝜆𝜆Δ𝑡𝑡: 

ℙ[𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 = 𝑛𝑛] =
(𝜆𝜆𝜆𝜆𝑡𝑡)𝑛𝑛𝑒𝑒−(𝜆𝜆𝜆𝜆𝑡𝑡)

𝑛𝑛! ,                                          (35) 

then, the probability density function of the IID discretized logarithmic return as a whole 

is given by an infinite sum that starts at 0, where each term is a multiplication of the 

probability of the random variable Δ𝑋𝑋𝑖𝑖 , conditioned on a defined number of jumps 𝑛𝑛, 

multiplied by the probability mass function that the Poisson random variable 𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 

takes that number of jumps 𝑛𝑛 (Bayes rule):  

𝑓𝑓(Δ𝑋𝑋𝑖𝑖;  𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂) = ∑

{
  
 

  
 

1
√2𝜋𝜋√𝜎𝜎2Δ𝑡𝑡 + 𝑛𝑛𝜂𝜂

𝑒𝑒
−12
{ 
 
  [Δ𝑋𝑋𝑖𝑖−(𝜇𝜇−

𝜎𝜎2
2 )Δ𝑡𝑡−𝑛𝑛𝑛𝑛]

2

𝜎𝜎2Δ𝑡𝑡+𝑛𝑛𝑛𝑛
} 
 
  

(𝜆𝜆Δ𝑡𝑡)𝑛𝑛𝑒𝑒−(𝜆𝜆Δ𝑡𝑡)
𝑛𝑛!

}
  
 

  
 

∞

𝑛𝑛=0
,

∀  𝑖𝑖 = 1,2, … ,𝒩𝒩.      (36) 

Equations (32), (33), (34), (35), and (36) are consistent with equations (25), (26), (27), 

(28), and (29) respectively in a discretized framework.    

To obtain the asymptotic variance of the estimator �̂�𝜇 we might try to firstly employ the 

maximum likelihood method. Therefore, given the 𝒩𝒩 observations, we proceed to 

formulate the joint likelihood function ℒ( 𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂) based on equation (36):   

ℒ( 𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂) =∏𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; Δ𝑋𝑋𝑖𝑖)
𝒩𝒩

𝑖𝑖=1
                                        (37) 

 

 based on 
equation (36):  

𝑓𝑓(Δ𝑋𝑋𝑖𝑖; 𝜇𝜇, 𝜎𝜎, 𝛽𝛽, 𝜂𝜂|𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 = 𝑛𝑛) =
1

√2𝜋𝜋√𝜎𝜎2Δ𝑡𝑡 + 𝑛𝑛𝜂𝜂
𝑒𝑒
−12
{ 
 
  [Δ𝑋𝑋𝑖𝑖−(𝜇𝜇−

𝜎𝜎2
2 )Δ𝑡𝑡−𝑛𝑛𝑛𝑛]

2

𝜎𝜎2Δ𝑡𝑡+𝑛𝑛𝑛𝑛
} 
 
  

, ∀  𝑖𝑖

= 1,2,… ,𝒩𝒩.  (34) 

Now, considering again that the probability that the Poisson random variable 𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 

takes the value 𝑛𝑛 is given by the Poisson distribution with parameter 𝜆𝜆(𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1) = 𝜆𝜆Δ𝑡𝑡: 

ℙ[𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 = 𝑛𝑛] =
(𝜆𝜆𝜆𝜆𝑡𝑡)𝑛𝑛𝑒𝑒−(𝜆𝜆𝜆𝜆𝑡𝑡)

𝑛𝑛! ,                                          (35) 

then, the probability density function of the IID discretized logarithmic return as a whole 

is given by an infinite sum that starts at 0, where each term is a multiplication of the 

probability of the random variable Δ𝑋𝑋𝑖𝑖 , conditioned on a defined number of jumps 𝑛𝑛, 

multiplied by the probability mass function that the Poisson random variable 𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 

takes that number of jumps 𝑛𝑛 (Bayes rule):  

𝑓𝑓(Δ𝑋𝑋𝑖𝑖;  𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂) = ∑

{
  
 

  
 

1
√2𝜋𝜋√𝜎𝜎2Δ𝑡𝑡 + 𝑛𝑛𝜂𝜂

𝑒𝑒
−12
{ 
 
  [Δ𝑋𝑋𝑖𝑖−(𝜇𝜇−

𝜎𝜎2
2 )Δ𝑡𝑡−𝑛𝑛𝑛𝑛]

2

𝜎𝜎2Δ𝑡𝑡+𝑛𝑛𝑛𝑛
} 
 
  

(𝜆𝜆Δ𝑡𝑡)𝑛𝑛𝑒𝑒−(𝜆𝜆Δ𝑡𝑡)
𝑛𝑛!

}
  
 

  
 

∞

𝑛𝑛=0
,

∀  𝑖𝑖 = 1,2, … ,𝒩𝒩.      (36) 

Equations (32), (33), (34), (35), and (36) are consistent with equations (25), (26), (27), 

(28), and (29) respectively in a discretized framework.    

To obtain the asymptotic variance of the estimator �̂�𝜇 we might try to firstly employ the 

maximum likelihood method. Therefore, given the 𝒩𝒩 observations, we proceed to 

formulate the joint likelihood function ℒ( 𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂) based on equation (36):   

ℒ( 𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂) =∏𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; Δ𝑋𝑋𝑖𝑖)
𝒩𝒩

𝑖𝑖=1
                                        (37) 

 where where 𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; Δ𝑋𝑋𝑖𝑖) represents the likelihood function for one observation.  

We should proceed by maximizing the joint likelihood function to obtain estimators �̂�𝜇 �̂�𝜎, 

�̂�𝜆, �̂�𝛽 and �̂�𝜂. However, given that the logarithmic function is a monotonic function, we can re-

express equation (37) first to obtain the joint log-likelihood function ℓ( 𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂):  

ℓ( 𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂) = 𝐿𝐿𝐿𝐿 {∏𝑓𝑓( 𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; Δ𝑋𝑋𝑖𝑖)
𝒩𝒩

𝑖𝑖=1
} =∑𝐿𝐿𝐿𝐿[𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; Δ𝑋𝑋𝑖𝑖)]

𝒩𝒩

𝑖𝑖=1
            (38) 

The expression 𝐿𝐿𝐿𝐿[𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; Δ𝑋𝑋𝑖𝑖)] can be written as:   

𝐿𝐿𝐿𝐿[𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; Δ𝑋𝑋𝑖𝑖)]

= 𝐿𝐿𝐿𝐿

{
  
 

  
 

∑

{
  
 

  
 

1
√2𝜋𝜋√𝜎𝜎2Δ𝑡𝑡 + 𝐿𝐿𝜂𝜂

𝑒𝑒
−12
{ 
 
  [Δ𝑋𝑋𝑖𝑖−(𝜇𝜇−

𝜎𝜎2
2 )Δ𝑡𝑡−𝑛𝑛𝑛𝑛]

2

𝜎𝜎2Δ𝑡𝑡+𝑛𝑛𝑛𝑛
} 
 
  

(𝜆𝜆Δ𝑡𝑡)𝑛𝑛𝑒𝑒−(𝜆𝜆Δ𝑡𝑡)
𝐿𝐿!

}
  
 

  
 

∞

𝑛𝑛=0

}
  
 

  
 

,

∀  𝑖𝑖 = 1,2, … ,𝒩𝒩.        (39) 

Therefore, the joint log-likelihood function is given by:  

ℓ(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂)

=∑𝐿𝐿𝐿𝐿

{
  
 

  
 

∑

{
  
 

  
 

1
√2𝜋𝜋√𝜎𝜎2Δ𝑡𝑡 + 𝐿𝐿𝜂𝜂

𝑒𝑒
−12
{ 
 
  [Δ𝑋𝑋𝑖𝑖−(𝜇𝜇−

𝜎𝜎2
2 )Δ𝑡𝑡−𝑛𝑛𝑛𝑛]

2

𝜎𝜎2Δ𝑡𝑡+𝑛𝑛𝑛𝑛
} 
 
  

(𝜆𝜆Δ𝑡𝑡)𝑛𝑛𝑒𝑒−(𝜆𝜆Δ𝑡𝑡)
𝐿𝐿!

}
  
 

  
 

∞

𝑛𝑛=0

}
  
 

  
 

𝒩𝒩

𝑖𝑖=1
.            (40) 

Given equation (40) we should proceed, as in the case of the GBM, by differentiating it 

with respect to each parameter and then equating to zero to obtain the first order 

conditions. However, as was already indicated by Press (1967) and Beckers (1981), these 

first order conditions contain an infinite sum and are highly non-linear (given that the sum 

over the components appears inside the logarithmic function). In this respect, the issue of 

the infinite sum has been tackled in at least two ways. One way consists of truncating the 

summatory, an idea originally proposed by Ball and Torous (1985). The other consists of 

 represents the likelihood function for one observation. 
We should proceed by maximizing the joint likelihood function to obtain 

estimators µ̂ σ̂, 

where 𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; Δ𝑋𝑋𝑖𝑖) represents the likelihood function for one observation.  

We should proceed by maximizing the joint likelihood function to obtain estimators �̂�𝜇 �̂�𝜎, 

�̂�𝜆, �̂�𝛽 and �̂�𝜂. However, given that the logarithmic function is a monotonic function, we can re-

express equation (37) first to obtain the joint log-likelihood function ℓ( 𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂):  

ℓ( 𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂) = 𝐿𝐿𝐿𝐿 {∏𝑓𝑓( 𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; Δ𝑋𝑋𝑖𝑖)
𝒩𝒩

𝑖𝑖=1
} =∑𝐿𝐿𝐿𝐿[𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; Δ𝑋𝑋𝑖𝑖)]

𝒩𝒩

𝑖𝑖=1
            (38) 

The expression 𝐿𝐿𝐿𝐿[𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; Δ𝑋𝑋𝑖𝑖)] can be written as:   

𝐿𝐿𝐿𝐿[𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; Δ𝑋𝑋𝑖𝑖)]

= 𝐿𝐿𝐿𝐿

{
  
 

  
 

∑

{
  
 

  
 

1
√2𝜋𝜋√𝜎𝜎2Δ𝑡𝑡 + 𝐿𝐿𝜂𝜂

𝑒𝑒
−12
{ 
 
  [Δ𝑋𝑋𝑖𝑖−(𝜇𝜇−

𝜎𝜎2
2 )Δ𝑡𝑡−𝑛𝑛𝑛𝑛]

2

𝜎𝜎2Δ𝑡𝑡+𝑛𝑛𝑛𝑛
} 
 
  

(𝜆𝜆Δ𝑡𝑡)𝑛𝑛𝑒𝑒−(𝜆𝜆Δ𝑡𝑡)
𝐿𝐿!

}
  
 

  
 

∞

𝑛𝑛=0

}
  
 

  
 

,

∀  𝑖𝑖 = 1,2, … ,𝒩𝒩.        (39) 

Therefore, the joint log-likelihood function is given by:  

ℓ(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂)

=∑𝐿𝐿𝐿𝐿

{
  
 

  
 

∑

{
  
 

  
 

1
√2𝜋𝜋√𝜎𝜎2Δ𝑡𝑡 + 𝐿𝐿𝜂𝜂

𝑒𝑒
−12
{ 
 
  [Δ𝑋𝑋𝑖𝑖−(𝜇𝜇−

𝜎𝜎2
2 )Δ𝑡𝑡−𝑛𝑛𝑛𝑛]

2

𝜎𝜎2Δ𝑡𝑡+𝑛𝑛𝑛𝑛
} 
 
  

(𝜆𝜆Δ𝑡𝑡)𝑛𝑛𝑒𝑒−(𝜆𝜆Δ𝑡𝑡)
𝐿𝐿!

}
  
 

  
 

∞

𝑛𝑛=0

}
  
 

  
 

𝒩𝒩

𝑖𝑖=1
.            (40) 

Given equation (40) we should proceed, as in the case of the GBM, by differentiating it 

with respect to each parameter and then equating to zero to obtain the first order 

conditions. However, as was already indicated by Press (1967) and Beckers (1981), these 

first order conditions contain an infinite sum and are highly non-linear (given that the sum 

over the components appears inside the logarithmic function). In this respect, the issue of 

the infinite sum has been tackled in at least two ways. One way consists of truncating the 

summatory, an idea originally proposed by Ball and Torous (1985). The other consists of 

 and 

where 𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; Δ𝑋𝑋𝑖𝑖) represents the likelihood function for one observation.  

We should proceed by maximizing the joint likelihood function to obtain estimators �̂�𝜇 �̂�𝜎, 

�̂�𝜆, �̂�𝛽 and �̂�𝜂. However, given that the logarithmic function is a monotonic function, we can re-

express equation (37) first to obtain the joint log-likelihood function ℓ( 𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂):  

ℓ( 𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂) = 𝐿𝐿𝐿𝐿 {∏𝑓𝑓( 𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; Δ𝑋𝑋𝑖𝑖)
𝒩𝒩

𝑖𝑖=1
} =∑𝐿𝐿𝐿𝐿[𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; Δ𝑋𝑋𝑖𝑖)]

𝒩𝒩

𝑖𝑖=1
            (38) 

The expression 𝐿𝐿𝐿𝐿[𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; Δ𝑋𝑋𝑖𝑖)] can be written as:   

𝐿𝐿𝐿𝐿[𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; Δ𝑋𝑋𝑖𝑖)]

= 𝐿𝐿𝐿𝐿

{
  
 

  
 

∑

{
  
 

  
 

1
√2𝜋𝜋√𝜎𝜎2Δ𝑡𝑡 + 𝐿𝐿𝜂𝜂

𝑒𝑒
−12
{ 
 
  [Δ𝑋𝑋𝑖𝑖−(𝜇𝜇−

𝜎𝜎2
2 )Δ𝑡𝑡−𝑛𝑛𝑛𝑛]

2

𝜎𝜎2Δ𝑡𝑡+𝑛𝑛𝑛𝑛
} 
 
  

(𝜆𝜆Δ𝑡𝑡)𝑛𝑛𝑒𝑒−(𝜆𝜆Δ𝑡𝑡)
𝐿𝐿!

}
  
 

  
 

∞

𝑛𝑛=0

}
  
 

  
 

,

∀  𝑖𝑖 = 1,2, … ,𝒩𝒩.        (39) 

Therefore, the joint log-likelihood function is given by:  

ℓ(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂)

=∑𝐿𝐿𝐿𝐿

{
  
 

  
 

∑

{
  
 

  
 

1
√2𝜋𝜋√𝜎𝜎2Δ𝑡𝑡 + 𝐿𝐿𝜂𝜂

𝑒𝑒
−12
{ 
 
  [Δ𝑋𝑋𝑖𝑖−(𝜇𝜇−

𝜎𝜎2
2 )Δ𝑡𝑡−𝑛𝑛𝑛𝑛]

2

𝜎𝜎2Δ𝑡𝑡+𝑛𝑛𝑛𝑛
} 
 
  

(𝜆𝜆Δ𝑡𝑡)𝑛𝑛𝑒𝑒−(𝜆𝜆Δ𝑡𝑡)
𝐿𝐿!

}
  
 

  
 

∞

𝑛𝑛=0

}
  
 

  
 

𝒩𝒩

𝑖𝑖=1
.            (40) 

Given equation (40) we should proceed, as in the case of the GBM, by differentiating it 

with respect to each parameter and then equating to zero to obtain the first order 

conditions. However, as was already indicated by Press (1967) and Beckers (1981), these 

first order conditions contain an infinite sum and are highly non-linear (given that the sum 

over the components appears inside the logarithmic function). In this respect, the issue of 

the infinite sum has been tackled in at least two ways. One way consists of truncating the 

summatory, an idea originally proposed by Ball and Torous (1985). The other consists of 

. However, given that the logarithmic function is a 
monotonic function, we can re-express equation (37) first to obtain the joint 
log-likelihood function 

where 𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; Δ𝑋𝑋𝑖𝑖) represents the likelihood function for one observation.  

We should proceed by maximizing the joint likelihood function to obtain estimators �̂�𝜇 �̂�𝜎, 

�̂�𝜆, �̂�𝛽 and �̂�𝜂. However, given that the logarithmic function is a monotonic function, we can re-

express equation (37) first to obtain the joint log-likelihood function ℓ( 𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂):  

ℓ( 𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂) = 𝐿𝐿𝐿𝐿 {∏𝑓𝑓( 𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; Δ𝑋𝑋𝑖𝑖)
𝒩𝒩

𝑖𝑖=1
} =∑𝐿𝐿𝐿𝐿[𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; Δ𝑋𝑋𝑖𝑖)]

𝒩𝒩

𝑖𝑖=1
            (38) 

The expression 𝐿𝐿𝐿𝐿[𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; Δ𝑋𝑋𝑖𝑖)] can be written as:   

𝐿𝐿𝐿𝐿[𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; Δ𝑋𝑋𝑖𝑖)]

= 𝐿𝐿𝐿𝐿

{
  
 

  
 

∑

{
  
 

  
 

1
√2𝜋𝜋√𝜎𝜎2Δ𝑡𝑡 + 𝐿𝐿𝜂𝜂

𝑒𝑒
−12
{ 
 
  [Δ𝑋𝑋𝑖𝑖−(𝜇𝜇−

𝜎𝜎2
2 )Δ𝑡𝑡−𝑛𝑛𝑛𝑛]

2

𝜎𝜎2Δ𝑡𝑡+𝑛𝑛𝑛𝑛
} 
 
  

(𝜆𝜆Δ𝑡𝑡)𝑛𝑛𝑒𝑒−(𝜆𝜆Δ𝑡𝑡)
𝐿𝐿!

}
  
 

  
 

∞

𝑛𝑛=0

}
  
 

  
 

,

∀  𝑖𝑖 = 1,2, … ,𝒩𝒩.        (39) 

Therefore, the joint log-likelihood function is given by:  

ℓ(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂)

=∑𝐿𝐿𝐿𝐿

{
  
 

  
 

∑

{
  
 

  
 

1
√2𝜋𝜋√𝜎𝜎2Δ𝑡𝑡 + 𝐿𝐿𝜂𝜂

𝑒𝑒
−12
{ 
 
  [Δ𝑋𝑋𝑖𝑖−(𝜇𝜇−

𝜎𝜎2
2 )Δ𝑡𝑡−𝑛𝑛𝑛𝑛]

2

𝜎𝜎2Δ𝑡𝑡+𝑛𝑛𝑛𝑛
} 
 
  

(𝜆𝜆Δ𝑡𝑡)𝑛𝑛𝑒𝑒−(𝜆𝜆Δ𝑡𝑡)
𝐿𝐿!

}
  
 

  
 

∞

𝑛𝑛=0

}
  
 

  
 

𝒩𝒩

𝑖𝑖=1
.            (40) 

Given equation (40) we should proceed, as in the case of the GBM, by differentiating it 

with respect to each parameter and then equating to zero to obtain the first order 

conditions. However, as was already indicated by Press (1967) and Beckers (1981), these 

first order conditions contain an infinite sum and are highly non-linear (given that the sum 

over the components appears inside the logarithmic function). In this respect, the issue of 

the infinite sum has been tackled in at least two ways. One way consists of truncating the 

summatory, an idea originally proposed by Ball and Torous (1985). The other consists of 

: 
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where 𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; Δ𝑋𝑋𝑖𝑖) represents the likelihood function for one observation.  

We should proceed by maximizing the joint likelihood function to obtain estimators �̂�𝜇 �̂�𝜎, 

�̂�𝜆, �̂�𝛽 and �̂�𝜂. However, given that the logarithmic function is a monotonic function, we can re-

express equation (37) first to obtain the joint log-likelihood function ℓ( 𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂):  

ℓ( 𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂) = 𝐿𝐿𝐿𝐿 {∏𝑓𝑓( 𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; Δ𝑋𝑋𝑖𝑖)
𝒩𝒩

𝑖𝑖=1
} =∑𝐿𝐿𝐿𝐿[𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; Δ𝑋𝑋𝑖𝑖)]

𝒩𝒩

𝑖𝑖=1
            (38) 

The expression 𝐿𝐿𝐿𝐿[𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; Δ𝑋𝑋𝑖𝑖)] can be written as:   

𝐿𝐿𝐿𝐿[𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; Δ𝑋𝑋𝑖𝑖)]

= 𝐿𝐿𝐿𝐿

{
  
 

  
 

∑

{
  
 

  
 

1
√2𝜋𝜋√𝜎𝜎2Δ𝑡𝑡 + 𝐿𝐿𝜂𝜂

𝑒𝑒
−12
{ 
 
  [Δ𝑋𝑋𝑖𝑖−(𝜇𝜇−

𝜎𝜎2
2 )Δ𝑡𝑡−𝑛𝑛𝑛𝑛]

2

𝜎𝜎2Δ𝑡𝑡+𝑛𝑛𝑛𝑛
} 
 
  

(𝜆𝜆Δ𝑡𝑡)𝑛𝑛𝑒𝑒−(𝜆𝜆Δ𝑡𝑡)
𝐿𝐿!

}
  
 

  
 

∞

𝑛𝑛=0

}
  
 

  
 

,

∀  𝑖𝑖 = 1,2, … ,𝒩𝒩.        (39) 

Therefore, the joint log-likelihood function is given by:  

ℓ(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂)

=∑𝐿𝐿𝐿𝐿

{
  
 

  
 

∑

{
  
 

  
 

1
√2𝜋𝜋√𝜎𝜎2Δ𝑡𝑡 + 𝐿𝐿𝜂𝜂

𝑒𝑒
−12
{ 
 
  [Δ𝑋𝑋𝑖𝑖−(𝜇𝜇−

𝜎𝜎2
2 )Δ𝑡𝑡−𝑛𝑛𝑛𝑛]

2

𝜎𝜎2Δ𝑡𝑡+𝑛𝑛𝑛𝑛
} 
 
  

(𝜆𝜆Δ𝑡𝑡)𝑛𝑛𝑒𝑒−(𝜆𝜆Δ𝑡𝑡)
𝐿𝐿!

}
  
 

  
 

∞

𝑛𝑛=0

}
  
 

  
 

𝒩𝒩

𝑖𝑖=1
.            (40) 

Given equation (40) we should proceed, as in the case of the GBM, by differentiating it 

with respect to each parameter and then equating to zero to obtain the first order 

conditions. However, as was already indicated by Press (1967) and Beckers (1981), these 

first order conditions contain an infinite sum and are highly non-linear (given that the sum 

over the components appears inside the logarithmic function). In this respect, the issue of 

the infinite sum has been tackled in at least two ways. One way consists of truncating the 

summatory, an idea originally proposed by Ball and Torous (1985). The other consists of 

The expression 

where 𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; Δ𝑋𝑋𝑖𝑖) represents the likelihood function for one observation.  

We should proceed by maximizing the joint likelihood function to obtain estimators �̂�𝜇 �̂�𝜎, 

�̂�𝜆, �̂�𝛽 and �̂�𝜂. However, given that the logarithmic function is a monotonic function, we can re-

express equation (37) first to obtain the joint log-likelihood function ℓ( 𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂):  

ℓ( 𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂) = 𝐿𝐿𝐿𝐿 {∏𝑓𝑓( 𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; Δ𝑋𝑋𝑖𝑖)
𝒩𝒩

𝑖𝑖=1
} =∑𝐿𝐿𝐿𝐿[𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; Δ𝑋𝑋𝑖𝑖)]

𝒩𝒩

𝑖𝑖=1
            (38) 

The expression 𝐿𝐿𝐿𝐿[𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; Δ𝑋𝑋𝑖𝑖)] can be written as:   

𝐿𝐿𝐿𝐿[𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; Δ𝑋𝑋𝑖𝑖)]

= 𝐿𝐿𝐿𝐿

{
  
 

  
 

∑

{
  
 

  
 

1
√2𝜋𝜋√𝜎𝜎2Δ𝑡𝑡 + 𝐿𝐿𝜂𝜂

𝑒𝑒
−12
{ 
 
  [Δ𝑋𝑋𝑖𝑖−(𝜇𝜇−

𝜎𝜎2
2 )Δ𝑡𝑡−𝑛𝑛𝑛𝑛]

2

𝜎𝜎2Δ𝑡𝑡+𝑛𝑛𝑛𝑛
} 
 
  

(𝜆𝜆Δ𝑡𝑡)𝑛𝑛𝑒𝑒−(𝜆𝜆Δ𝑡𝑡)
𝐿𝐿!

}
  
 

  
 

∞

𝑛𝑛=0

}
  
 

  
 

,

∀  𝑖𝑖 = 1,2, … ,𝒩𝒩.        (39) 

Therefore, the joint log-likelihood function is given by:  

ℓ(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂)

=∑𝐿𝐿𝐿𝐿

{
  
 

  
 

∑

{
  
 

  
 

1
√2𝜋𝜋√𝜎𝜎2Δ𝑡𝑡 + 𝐿𝐿𝜂𝜂

𝑒𝑒
−12
{ 
 
  [Δ𝑋𝑋𝑖𝑖−(𝜇𝜇−

𝜎𝜎2
2 )Δ𝑡𝑡−𝑛𝑛𝑛𝑛]

2

𝜎𝜎2Δ𝑡𝑡+𝑛𝑛𝑛𝑛
} 
 
  

(𝜆𝜆Δ𝑡𝑡)𝑛𝑛𝑒𝑒−(𝜆𝜆Δ𝑡𝑡)
𝐿𝐿!

}
  
 

  
 

∞

𝑛𝑛=0

}
  
 

  
 

𝒩𝒩

𝑖𝑖=1
.            (40) 

Given equation (40) we should proceed, as in the case of the GBM, by differentiating it 

with respect to each parameter and then equating to zero to obtain the first order 

conditions. However, as was already indicated by Press (1967) and Beckers (1981), these 

first order conditions contain an infinite sum and are highly non-linear (given that the sum 
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Given equation (40) we should proceed, as in the case of the GBM, by differ-
entiating it with respect to each parameter and then equating to zero to obtain 
the first order conditions. However, as was already indicated by Press (1967) 
and Beckers (1981), these first order conditions contain an infinite sum and are 
highly non-linear (given that the sum over the components appears inside the 
logarithmic function). In this respect, the issue of the infinite sum has been 
tackled in at least two ways. One way consists of truncating the summatory, an 
idea originally proposed by Ball and Torous (1985). The other consists of dis-
cretizing the process with other finite-support processes instead of the Poisson 
one. An example is the one which approximates the Poisson random variables 
with Bernoulli ones as in Ball and Torous (1983) and Honoré (1998). 
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In any case, the fact that the logarithmic of the process is a Gaussian mix-
ture implies (from the mixture-of-distributions literature) that the joint likeli-
hood function can be unbounded (reaching arbitrary high levels) which causes 
inconsistencies in the parameters. Therefore, it is necessary to impose certain 
conditions on them (see Kiefer, 1978 and Honoré, 1998 for further discus-
sions) which combined with the non-linear nature of the first order conditions 
heavily increases the problem to obtain analytical solutions for the estimators. 
Therefore, most of the literature on the subject tends to maximize equation (40) 
not analytically but using numerical methods or techniques that truncate the 
summatory and impose conditions over the parameters.  

Given that we want to obtain an analytical formula for the asymptotic vari-
ance of the MLE of the trend parameter, but it is not straightforward to obtain 
a closed-form formula for µ̂ directly as indicated above, we propose assuming 
again that the other parameters are known, and work with the Fisher information 
of µ̂ for one observation and then scale it by 
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= 1,2,… ,𝒩𝒩.  (34) 
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(𝜆𝜆𝜆𝜆𝑡𝑡)𝑛𝑛𝑒𝑒−(𝜆𝜆𝜆𝜆𝑡𝑡)

𝑛𝑛! ,                                          (35) 

then, the probability density function of the IID discretized logarithmic return as a whole 

is given by an infinite sum that starts at 0, where each term is a multiplication of the 

probability of the random variable Δ𝑋𝑋𝑖𝑖 , conditioned on a defined number of jumps 𝑛𝑛, 
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∀  𝑖𝑖 = 1,2, … ,𝒩𝒩.      (36) 

Equations (32), (33), (34), (35), and (36) are consistent with equations (25), (26), (27), 

(28), and (29) respectively in a discretized framework.    

To obtain the asymptotic variance of the estimator �̂�𝜇 we might try to firstly employ the 

maximum likelihood method. Therefore, given the 𝒩𝒩 observations, we proceed to 

formulate the joint likelihood function ℒ( 𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂) based on equation (36):   

ℒ( 𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂) =∏𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; Δ𝑋𝑋𝑖𝑖)
𝒩𝒩

𝑖𝑖=1
                                        (37) 
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3. Montecarlo simulations

To prove the analytical results obtained in both sections 1 and 2 from a different 
angle, in this section we develop Monte Carlo simulations to examine the effect 
of frequency on the accuracy (i.e., variance) of the estimator µ̂ Following Ait-
Sahalia et al (2005), we will consider that a daily frequency is high enough to 
show the effects presented in this paper (in particular of section 2) but without 
being affected by market microstructures.

3.1. Geometric Brownian Motion Case 
For the GBM case, we simulate 5,000 sample paths using equation (10), using 
a fixed window of observation of 4 years 

lim
Δ𝑡𝑡→0

( 𝐼𝐼𝜇𝜇
𝐽𝐽𝐽𝐽) = δ𝑡𝑡

𝜎𝜎2 + 𝑜𝑜(Δ𝑡𝑡) = 𝐼𝐼𝜇𝜇
𝐺𝐺𝐺𝐺𝐺𝐺                                             (41) 

Alternatively, the asymptotic variance of �̂�𝜇, denoted as 𝑉𝑉𝑉𝑉𝑟𝑟𝐽𝐽𝐽𝐽(�̂�𝜇), when Δ𝑡𝑡 → 0 is given 

by: 

lim
Δ𝑡𝑡→0

[ 𝑉𝑉𝑉𝑉𝑟𝑟𝐽𝐽𝐽𝐽(�̂�𝜇)] = 𝜎𝜎2

δ𝑡𝑡 + 𝑜𝑜(Δ𝑡𝑡) = 𝑉𝑉𝑉𝑉𝑟𝑟𝐺𝐺𝐺𝐺𝐺𝐺(�̂�𝜇)                                 (42) 

 

Proof See “Appendix B” ∎ 

Proposition 2 indicates that the presence of jumps increases the asymptotic variance of 

the drift parameter. However, it is possible to recover the efficiency as if there were no 

jumps when high frequency data (i.e., Δ𝑡𝑡 → 0) is used.  

 

3. Montecarlo simulations 

To prove the analytical results obtained in both sections 1 and 2 from a different angle, 

in this section we develop Monte Carlo simulations to examine the effect of frequency on 

the accuracy (i.e., variance) of the estimator �̂�𝜇.  Following Ait-Sahalia et al (2005), we will 

consider that a daily frequency is high enough to show the effects presented in this paper 

(in particular of section 2) but without being affected by market microstructures.      

 

3.1. Geometric Brownian Motion Case  

For the GBM case, we simulate 5,000 sample paths using equation (10), using a fixed 

window of observation of 4 years (𝛿𝛿𝑡𝑡 = (𝑡𝑡𝑁𝑁 = 𝑇𝑇) − (𝑡𝑡0 = 0) = 4) with three different 

frequencies of data: daily (Δ𝑡𝑡 = 1/252), weekly (Δ𝑡𝑡 = 1/52), and bi-weekly (Δ𝑡𝑡 = 1/26) . 

The parameters used are the following: 𝜇𝜇 = 0.1 (annual expected return of 10%), and 𝜎𝜎 =

 
5 We use 4 years so that, given the 𝜎𝜎 = 0.2, even for the lower frequency case (bi-weekly) we would 
guarantee statistical significance.   

 with 
three different frequencies of data: daily 

lim
Δ𝑡𝑡→0

( 𝐼𝐼𝜇𝜇
𝐽𝐽𝐽𝐽) = δ𝑡𝑡

𝜎𝜎2 + 𝑜𝑜(Δ𝑡𝑡) = 𝐼𝐼𝜇𝜇
𝐺𝐺𝐺𝐺𝐺𝐺                                             (41) 

Alternatively, the asymptotic variance of �̂�𝜇, denoted as 𝑉𝑉𝑉𝑉𝑟𝑟𝐽𝐽𝐽𝐽(�̂�𝜇), when Δ𝑡𝑡 → 0 is given 

by: 

lim
Δ𝑡𝑡→0

[ 𝑉𝑉𝑉𝑉𝑟𝑟𝐽𝐽𝐽𝐽(�̂�𝜇)] = 𝜎𝜎2

δ𝑡𝑡 + 𝑜𝑜(Δ𝑡𝑡) = 𝑉𝑉𝑉𝑉𝑟𝑟𝐺𝐺𝐺𝐺𝐺𝐺(�̂�𝜇)                                 (42) 

 

Proof See “Appendix B” ∎ 

Proposition 2 indicates that the presence of jumps increases the asymptotic variance of 

the drift parameter. However, it is possible to recover the efficiency as if there were no 

jumps when high frequency data (i.e., Δ𝑡𝑡 → 0) is used.  

 

3. Montecarlo simulations 

To prove the analytical results obtained in both sections 1 and 2 from a different angle, 

in this section we develop Monte Carlo simulations to examine the effect of frequency on 

the accuracy (i.e., variance) of the estimator �̂�𝜇.  Following Ait-Sahalia et al (2005), we will 

consider that a daily frequency is high enough to show the effects presented in this paper 

(in particular of section 2) but without being affected by market microstructures.      

 

3.1. Geometric Brownian Motion Case  

For the GBM case, we simulate 5,000 sample paths using equation (10), using a fixed 

window of observation of 4 years (𝛿𝛿𝑡𝑡 = (𝑡𝑡𝑁𝑁 = 𝑇𝑇) − (𝑡𝑡0 = 0) = 4) with three different 

frequencies of data: daily (Δ𝑡𝑡 = 1/252), weekly (Δ𝑡𝑡 = 1/52), and bi-weekly (Δ𝑡𝑡 = 1/26) . 

The parameters used are the following: 𝜇𝜇 = 0.1 (annual expected return of 10%), and 𝜎𝜎 =

 
5 We use 4 years so that, given the 𝜎𝜎 = 0.2, even for the lower frequency case (bi-weekly) we would 
guarantee statistical significance.   

, weekly 

lim
Δ𝑡𝑡→0

( 𝐼𝐼𝜇𝜇
𝐽𝐽𝐽𝐽) = δ𝑡𝑡

𝜎𝜎2 + 𝑜𝑜(Δ𝑡𝑡) = 𝐼𝐼𝜇𝜇
𝐺𝐺𝐺𝐺𝐺𝐺                                             (41) 

Alternatively, the asymptotic variance of �̂�𝜇, denoted as 𝑉𝑉𝑉𝑉𝑟𝑟𝐽𝐽𝐽𝐽(�̂�𝜇), when Δ𝑡𝑡 → 0 is given 

by: 

lim
Δ𝑡𝑡→0

[ 𝑉𝑉𝑉𝑉𝑟𝑟𝐽𝐽𝐽𝐽(�̂�𝜇)] = 𝜎𝜎2

δ𝑡𝑡 + 𝑜𝑜(Δ𝑡𝑡) = 𝑉𝑉𝑉𝑉𝑟𝑟𝐺𝐺𝐺𝐺𝐺𝐺(�̂�𝜇)                                 (42) 

 

Proof See “Appendix B” ∎ 

Proposition 2 indicates that the presence of jumps increases the asymptotic variance of 

the drift parameter. However, it is possible to recover the efficiency as if there were no 

jumps when high frequency data (i.e., Δ𝑡𝑡 → 0) is used.  

 

3. Montecarlo simulations 

To prove the analytical results obtained in both sections 1 and 2 from a different angle, 

in this section we develop Monte Carlo simulations to examine the effect of frequency on 
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5. The parameters used are the following: µ̂ = 0.1 
(annual expected return of 10%), and σ = 0.2 (annual volatility of 20%). Once 
the sample paths are obtained, the maximum likelihood method is applied to 
each one, such that we look for the values that maximize equation (14) in every 
case. The means, variances, and standard deviations related with µ̂ are presented 
in Table 1, where we cannot see a clear trend related with the frequency of the 
data and the variance of the estimator (variance values oscillate around 0.01 
or the standard deviation values around 10%). We can conclude that the vari-
ance of the estimator is unaffected by the frequency of the data (given the same 
window of observation) and are always close to the expression in proposition 
1 which in this case is equal to: 
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𝑆𝑆𝑆𝑆𝑆𝑆𝐺𝐺𝐺𝐺𝐺𝐺(�̂�𝜇) = √(0.2)2
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Table 1. Results of 5,000 Monte Carlo simulations for estimator �̂�𝜇 with 𝜇𝜇 = 0.1 and 𝜎𝜎 = 0.2 

for the same window observation of 𝛿𝛿𝑆𝑆 = 4 years with different frequencies: Δ𝑆𝑆 = 1/26 (bi-

weekly), Δ𝑆𝑆 = 1/52 (weekly), Δ𝑆𝑆 = 1/252 (daily) 
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𝜎𝜎 = 0.2 (annual volatility of 20%), 𝜆𝜆 = 5 (five jumps per year), 𝛽𝛽 = 0.05 (expected return of 

jumps of 5%) and 𝜂𝜂
1
2 = 0.4 (volatility of jumps 40%). Once the sample paths are obtained, 

Frequency Mean Variance Std
Bi-Weekly 10,0% 0,0105 10,2%
Weekly 10,0% 0,0105 10,3%
Daily 10,0% 0,0097 9,9%5 We use 4 years so that, given the σ = 0.2, even for the lower frequency case (bi-weekly) 

we would guarantee statistical significance.
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Table 1. Results of 5,000 Monte Carlo simulations for estimator µ̂ with µ = 0.1 
and σ = 0.2 for the same window observation of 
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 (volatility 
of jumps 40%). Once the sample paths are obtained, the maximum likelihood 
method is applied to each one such that we look for the values that maximize 
equation (40). Following Ball and Torous (1985), we truncate the infinite sum 
to n = 10, and following Honoré (1998) we restrict both volatility terms and the 
frequency of jumps from 0.0001 to a maximum of 10. The estimators, variances, 
and standard deviations are presented in Table 2, in which we can see a clear 
trend where the variance of the estimator decreases and approaches to 0.01 (or 
the standard deviation decreases and approaches to 10%) as the frequency of 
the data increases, as indicated in proposition 2:

the maximum likelihood method is applied to each one such that we look for the values 

that maximize equation (40). Following Ball and Torous (1985), we truncate the infinite 

sum to 𝑛𝑛 = 10, and following Honoré (1998) we restrict both volatility terms and the 

frequency of jumps from 0.0001 to a maximum of 10. The estimators, variances, and 

standard deviations are presented in Table 2, in which we can see a clear trend where the 

variance of the estimator decreases and approaches to 0.01 (or the standard deviation 

decreases and approaches to 10%) as the frequency of the data increases, as indicated 

in proposition 2: 

lim
Δ𝑡𝑡→0

[ 𝑉𝑉𝑉𝑉𝑟𝑟𝐽𝐽𝐽𝐽(�̂�𝜇)] = (0.2)2

4 + 𝑜𝑜(Δ𝑡𝑡) = 𝑉𝑉𝑉𝑉𝑟𝑟𝐺𝐺𝐺𝐺𝐺𝐺(�̂�𝜇) = 0,01                     (45) 

lim
Δ𝑡𝑡→0

[ 𝑆𝑆𝑡𝑡𝑆𝑆𝐽𝐽𝐽𝐽(�̂�𝜇)] = √(0.2)2

4 + 𝑜𝑜(Δ𝑡𝑡) = √𝑉𝑉𝑉𝑉𝑟𝑟𝐺𝐺𝐺𝐺𝐺𝐺(�̂�𝜇) = 10%                     (46) 

Additionally, the numbers obtained in Table 2 are close to the ones obtained by using 

the same parameters for equations (B32), (B33) and (B34) in the Appendix showing 

consistency of the theoretical part of section 2.     

We can conclude that, given the same window of observation, higher frequencies of 

data improve the accuracy of the estimation, and when sampling occurs at very short 

intervals (in the daily example) it is possible to reach the same variance that the GBM case. 

As indicated by Ait-Sahalia (2004), this is due mainly to the fact that as Δ𝑡𝑡 gets smaller, 

the ability to identify price discontinuities (i.e., jumps in the context of the model) improves. 

Specifically, given that 𝛽𝛽 and 𝜂𝜂 are not time-scaled and remain constant when Δ𝑡𝑡 gets 

smaller (as opposed to 𝜇𝜇, 𝜎𝜎 and 𝜆𝜆 which are time-scaled by the factor Δ𝑡𝑡), then for higher 

frequencies it is easier to determine what logarithmic returns are outliers that might be 

categorized as jumps. Therefore, given that the maximum likelihood method estimates the 

jump parameters 𝜆𝜆, 𝛽𝛽 and 𝜂𝜂 with those price discontinuities or abnormal return outliers, 

while the others (namely 𝜇𝜇 and 𝜎𝜎) with the rest of the information, the accuracy of the 

Additionally, the numbers obtained in Table 2 are close to the ones obtained by 
using the same parameters for equations (B32), (B33) and (B34) in the Appendix 
showing consistency of the theoretical part of section 2.



42

odeon, issn: 1794-1113, e-issn: 2346-2140, N.° 24, enero-junio de 2023, pp. 25-54

We can conclude that, given the same window of observation, higher fre-
quencies of data improve the accuracy of the estimation, and when sampling 
occurs at very short intervals (in the daily example) it is possible to reach the 
same variance that the GBM case. As indicated by Ait-Sahalia (2004), this is 
due mainly to the fact that as Δt gets smaller, the ability to identify price discon-
tinuities (i.e., jumps in the context of the model) improves. Specifically, given 
that β and 
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 with those price discontinuities 
or abnormal return outliers, while the others (namely µ and σ) with the rest of 
the information, the accuracy of the parameters improves if the data allows for 
a better discrimination of outliers. In the limit, when 

parameters improves if the data allows for a better discrimination of outliers. In the limit, 

when Δ𝑡𝑡 → 0, the information used to estimate the drift parameter has no outliers and this 

is the reason why its variance reaches the one of the GBM.   
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Conclusion 

This paper shows that the frequency of data when estimating the drift term 𝜇𝜇 in the 

geometric jump-diffusion process à la Press (1967) is relevant. Nevertheless, we also 

prove that when frequency is sufficiently high, the accuracy improves to the same level of 

the case without jumps. This work is highly important for practitioners interested in fields 

such as forecasting or portfolio choice as it reveals the importance of calibrating their 

models with high frequency information. However, we are still far from a generalization of 

this property for geometric Lévy processes as the geometric jump-diffusion case is only 

one member of this family of stochastic processes. Therefore, for a generalization we 

should expand these ideas to other Lévy processes of finite activity as well as to the cases 

with infinite activity.       

 

 

 

Frequency Mean Variance Std
Bi-Weekly 10,3% 0,0148 12,2%
Weekly 10,3% 0,0131 11,5%
Daily 10,0% 0,0102 10,1%
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prove that when frequency is sufficiently high, the accuracy improves to the same level of 

the case without jumps. This work is highly important for practitioners interested in fields 

such as forecasting or portfolio choice as it reveals the importance of calibrating their 

models with high frequency information. However, we are still far from a generalization of 

this property for geometric Lévy processes as the geometric jump-diffusion case is only 

one member of this family of stochastic processes. Therefore, for a generalization we 

should expand these ideas to other Lévy processes of finite activity as well as to the cases 

with infinite activity.       

 

 

 

Frequency Mean Variance Std
Bi-Weekly 10,3% 0,0148 12,2%
Weekly 10,3% 0,0131 11,5%
Daily 10,0% 0,0102 10,1%

Table 2. Results of 5,000 Monte Carlo simulations for estimator µ̂ with µ = 0.1, σ = 
0.2, λ = 5, β = 0.05 and 

the maximum likelihood method is applied to each one such that we look for the values 

that maximize equation (40). Following Ball and Torous (1985), we truncate the infinite 

sum to 𝑛𝑛 = 10, and following Honoré (1998) we restrict both volatility terms and the 

frequency of jumps from 0.0001 to a maximum of 10. The estimators, variances, and 

standard deviations are presented in Table 2, in which we can see a clear trend where the 

variance of the estimator decreases and approaches to 0.01 (or the standard deviation 

decreases and approaches to 10%) as the frequency of the data increases, as indicated 

in proposition 2: 

lim
Δ𝑡𝑡→0

[ 𝑉𝑉𝑉𝑉𝑟𝑟𝐽𝐽𝐽𝐽(�̂�𝜇)] = (0.2)2

4 + 𝑜𝑜(Δ𝑡𝑡) = 𝑉𝑉𝑉𝑉𝑟𝑟𝐺𝐺𝐺𝐺𝐺𝐺(�̂�𝜇) = 0,01                     (45) 

lim
Δ𝑡𝑡→0

[ 𝑆𝑆𝑡𝑡𝑆𝑆𝐽𝐽𝐽𝐽(�̂�𝜇)] = √(0.2)2

4 + 𝑜𝑜(Δ𝑡𝑡) = √𝑉𝑉𝑉𝑉𝑟𝑟𝐺𝐺𝐺𝐺𝐺𝐺(�̂�𝜇) = 10%                     (46) 

Additionally, the numbers obtained in Table 2 are close to the ones obtained by using 

the same parameters for equations (B32), (B33) and (B34) in the Appendix showing 

consistency of the theoretical part of section 2.     

We can conclude that, given the same window of observation, higher frequencies of 

data improve the accuracy of the estimation, and when sampling occurs at very short 

intervals (in the daily example) it is possible to reach the same variance that the GBM case. 

As indicated by Ait-Sahalia (2004), this is due mainly to the fact that as Δ𝑡𝑡 gets smaller, 

the ability to identify price discontinuities (i.e., jumps in the context of the model) improves. 

Specifically, given that 𝛽𝛽 and 𝜂𝜂 are not time-scaled and remain constant when Δ𝑡𝑡 gets 

smaller (as opposed to 𝜇𝜇, 𝜎𝜎 and 𝜆𝜆 which are time-scaled by the factor Δ𝑡𝑡), then for higher 

frequencies it is easier to determine what logarithmic returns are outliers that might be 

categorized as jumps. Therefore, given that the maximum likelihood method estimates the 

jump parameters 𝜆𝜆, 𝛽𝛽 and 𝜂𝜂 with those price discontinuities or abnormal return outliers, 

while the others (namely 𝜇𝜇 and 𝜎𝜎) with the rest of the information, the accuracy of the 

 = 0.16 for the same window observation of δt = 4 years with 
different frequencies: Δt = 1/26 (bi-weekly), Δt = 1/52 (weekly), Δt = 1/252 (daily)

Conclusion

This paper shows that the frequency of data when estimating the drift term  in 
the geometric jump-diffusion process à la Press (1967) is relevant. Nevertheless, 
we also prove that when frequency is sufficiently high, the accuracy improves 
to the same level of the case without jumps. This work is highly important for 
practitioners interested in fields such as forecasting or portfolio choice as it re-
veals the importance of calibrating their models with high frequency information. 
However, we are still far from a generalization of this property for geometric 
Lévy processes as the geometric jump-diffusion case is only one member of 
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this family of stochastic processes. Therefore, for a generalization we should 
expand these ideas to other Lévy processes of finite activity as well as to the 
cases with infinite activity.      
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Appendix A. Variance of  for the GBMAppendix A. Variance of �̂�𝝁 for the GBM 

Let us first obtain the expected value of �̂�𝜇, by applying the expected value operator to 

equation (15):  

𝐸𝐸(�̂�𝜇) = 𝐸𝐸 (𝛿𝛿X
𝛿𝛿𝛿𝛿 + �̂�𝜎2

2 ),                                                      (𝐴𝐴1) 

from where we obtain:  

𝐸𝐸(�̂�𝜇) = 𝜇𝜇.                                                                (𝐴𝐴2) 

For the asymptotic variance of �̂�𝜇, we will use the Fisher information method as indicated 

by Härdle and Simar (2019). We depart from equation (10) for one single observation but 

working with the excess with respect to its expected value denoted as 𝐿𝐿𝑖𝑖 :  

𝐿𝐿𝑖𝑖 = Δ𝑋𝑋𝑖𝑖 − (𝜇𝜇 − 𝜎𝜎2

2 ) Δ𝛿𝛿,   ∀    𝑖𝑖 = 1,2, … , 𝒩𝒩.                                (𝐴𝐴3) 

Notice that the process {𝐿𝐿}𝑖𝑖=1
𝒩𝒩  is, by definition, IID such that each observation has an 

expected value, variance and Gaussian density given by:  

𝐸𝐸(𝐿𝐿𝑖𝑖) = 0,   ∀    𝑖𝑖 = 1,2, … , 𝒩𝒩,                                               (𝐴𝐴4) 

𝑉𝑉𝑉𝑉𝑉𝑉(𝐿𝐿𝑖𝑖) = 𝐸𝐸(𝐿𝐿𝑖𝑖
2) = 𝜎𝜎2Δ𝛿𝛿,   ∀    𝑖𝑖 = 1,2, … , 𝒩𝒩,                                 (𝐴𝐴5) 

𝑓𝑓[𝐿𝐿𝑖𝑖; 𝜇𝜇, 𝜎𝜎] = 1
√2𝜋𝜋𝜎𝜎2Δ𝛿𝛿

𝑒𝑒
−1

2( 𝐿𝐿𝑖𝑖2

𝜎𝜎2Δ𝑡𝑡)
, ∀    𝑖𝑖 = 1,2, … , 𝒩𝒩.                      (𝐴𝐴6) 

Therefore, the log-likelihood function for one observation is given by:  

𝐿𝐿𝐿𝐿[𝑓𝑓(𝜇𝜇, 𝜎𝜎; 𝐿𝐿𝑖𝑖)] = − 1
2 𝐿𝐿𝐿𝐿(2𝜋𝜋Δ𝛿𝛿) − 𝐿𝐿𝐿𝐿(𝜎𝜎) − 𝐿𝐿𝑖𝑖

2

2𝜎𝜎2Δt .  ∀    𝑖𝑖 = 1,2, … , 𝒩𝒩.        (𝐴𝐴7) 

The derivate with respect to 𝜇𝜇 is given by:  

 

𝜕𝜕𝐿𝐿𝐿𝐿[𝑓𝑓(𝜇𝜇, 𝜎𝜎; 𝐿𝐿𝑖𝑖)]
∂𝜇𝜇 = 𝐿𝐿𝑖𝑖

𝜎𝜎2 ,   ∀    𝑖𝑖 = 1,2, … , 𝒩𝒩.                                   (𝐴𝐴8) 

Therefore, we have:  
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{𝜕𝜕𝜕𝜕𝜕𝜕[𝑓𝑓(𝜇𝜇, 𝜎𝜎; 𝜕𝜕𝑖𝑖)]
∂𝜇𝜇 }

2
= 𝜕𝜕𝑖𝑖

2

𝜎𝜎4 ,   ∀    𝑖𝑖 = 1,2, … , 𝒩𝒩.                                  (𝐴𝐴9) 

Then the Fisher information of the trend parameter of one observation for the GBM, 

denoted as 𝐼𝐼𝜇𝜇,Δ𝑡𝑡
𝐺𝐺𝐺𝐺𝐺𝐺, is equivalent to:  

𝐼𝐼𝜇𝜇,Δ𝑡𝑡
𝐺𝐺𝐺𝐺𝐺𝐺 = 𝐸𝐸 {{𝜕𝜕𝜕𝜕𝜕𝜕[𝑓𝑓(𝜇𝜇, 𝜎𝜎; 𝜕𝜕𝑖𝑖)]

∂𝜇𝜇 }
2

} = 𝐸𝐸 (𝜕𝜕𝑖𝑖
2

𝜎𝜎4 ) = 1
𝜎𝜎4 𝐸𝐸(𝜕𝜕𝑖𝑖

2) = Δ𝑡𝑡
𝜎𝜎2 , ∀    𝑖𝑖 = 1,2, … , 𝒩𝒩.    (𝐴𝐴10) 

Alternatively, considering that:  

𝜕𝜕2𝜕𝜕𝜕𝜕[𝑓𝑓(𝜇𝜇, 𝜎𝜎; 𝜕𝜕𝑖𝑖)]
∂𝜇𝜇2 = − Δ𝑡𝑡

𝜎𝜎2 , ∀    𝑖𝑖 = 1,2, … , 𝒩𝒩,                               (𝐴𝐴11) 

then we obtain the same result that equation (A10) by the properties of Fisher 

information:  

𝐼𝐼𝜇𝜇,Δ𝑡𝑡
𝐺𝐺𝐺𝐺𝐺𝐺 = −𝐸𝐸 {𝜕𝜕2𝜕𝜕𝜕𝜕[𝑓𝑓(𝜇𝜇, 𝜎𝜎; 𝜕𝜕𝑖𝑖)]

∂𝜇𝜇2 } = −𝐸𝐸 (− Δ𝑡𝑡
𝜎𝜎2) = Δ𝑡𝑡

𝜎𝜎2 .                                 (𝐴𝐴12) 

Notice that the Fisher information for the entire sample 𝐼𝐼𝜇𝜇
𝐺𝐺𝐺𝐺𝐺𝐺 is obtained by scaling 𝐼𝐼𝜇𝜇,Δ𝑡𝑡

𝐺𝐺𝐺𝐺𝐺𝐺:   

𝐼𝐼𝜇𝜇
𝐺𝐺𝐺𝐺𝐺𝐺 = 𝒩𝒩𝐼𝐼𝜇𝜇,𝛥𝛥𝑡𝑡

𝐺𝐺𝐺𝐺𝐺𝐺 = 𝒩𝒩𝒩𝒩𝑡𝑡
𝜎𝜎2 = 𝛿𝛿𝑡𝑡

𝜎𝜎2 .                                                    (𝐴𝐴13) 

Then, the variance is the one given by equation (20) in proposition 1:  

𝑉𝑉𝑉𝑉𝑟𝑟𝐺𝐺𝐺𝐺𝐺𝐺(�̂�𝜇) = (𝐼𝐼𝜇𝜇
𝐺𝐺𝐺𝐺𝐺𝐺)−1  = 𝜎𝜎2

𝛿𝛿𝑡𝑡 .                                                 (𝐴𝐴14) 

As indicated by the maximum likelihood method, �̂�𝜇 is a consistent indicator given that it 

converges in mean square (and hence in probability) to 𝜇𝜇 when the window of observation 

goes to infinity:  

lim
𝛿𝛿𝑡𝑡→∞

[𝐸𝐸(�̂�𝜇)] = 𝜇𝜇,      lim
𝛿𝛿𝑡𝑡→∞

[𝑉𝑉𝑉𝑉𝑟𝑟(�̂�𝜇)] = 0.                                      (𝐴𝐴15) 
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Appendix B. Variance of  for the Jump-diffusion  
Case with GBMAppendix B. Variance of �̂�𝝁 for the Jump-diffusion Case with GBM 

For the asymptotic variance of �̂�𝜇, we will use the Fisher information method as indicated 

by Härdle and Simar (2019). We depart now from equation (30) for one single observation 

but working again with the excess with respect to its expected value when the number of 

jumps is equal to 𝑛𝑛, denoted again as 𝐿𝐿𝑖𝑖 :  

𝐿𝐿𝑖𝑖 = Δ𝑋𝑋𝑖𝑖 − (𝜇𝜇 − 𝜎𝜎2

2 ) Δ𝑡𝑡 − 𝑛𝑛𝑛𝑛, ∀    𝑖𝑖 = 1,2, … , 𝒩𝒩.                        (𝐵𝐵1) 

Notice that by conditioning the number of jumps to any number 𝑛𝑛, such that 𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 =

𝑛𝑛, the process {𝐿𝐿}𝑖𝑖=1
𝑁𝑁  is, by definition, IID such that each observation has an expected 

value, variance and Gaussian density given by:  

𝐸𝐸(𝐿𝐿𝑖𝑖|𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 = 𝑛𝑛) = 0, ∀    𝑖𝑖 = 1,2, … , 𝒩𝒩,                            (𝐵𝐵2) 

𝑉𝑉𝑉𝑉𝑉𝑉(𝐿𝐿𝑖𝑖|𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 = 𝑛𝑛) = 𝜎𝜎2Δ𝑡𝑡 + 𝑛𝑛𝑛𝑛, ∀    𝑖𝑖 = 1,2, … , 𝒩𝒩,                  (𝐵𝐵3) 

𝑓𝑓(𝐿𝐿𝑖𝑖;  𝜇𝜇, 𝜎𝜎, 𝑛𝑛, 𝑛𝑛|𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 = 𝑛𝑛) = 1
√2𝜋𝜋√𝜎𝜎2(Δ𝑡𝑡) + 𝑛𝑛𝑛𝑛

𝑒𝑒
−1

2( 𝐿𝐿𝑖𝑖
2

𝜎𝜎2Δ𝑡𝑡+𝑛𝑛𝑛𝑛)
,

∀    𝑖𝑖 = 1,2, … , 𝒩𝒩. (𝐵𝐵4) 

 

Now, considering that the probability that the Poisson random variable 𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1  takes 

the value 𝑛𝑛 is given by the Poisson distribution with parameter 𝜆𝜆(𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1) = 𝜆𝜆Δ𝑡𝑡: 

ℙ[𝑁𝑁𝑡𝑡𝑖𝑖 − 𝑁𝑁𝑡𝑡𝑖𝑖−1 = 𝑛𝑛] =
(𝜆𝜆𝜆𝜆𝑡𝑡)𝑛𝑛𝑒𝑒−(𝜆𝜆𝜆𝜆𝑡𝑡)

𝑛𝑛! ,                                         (𝐵𝐵5) 

then, the probability density function of the IID excess process as whole is given by: 

𝑓𝑓(𝐿𝐿𝑖𝑖;  𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝑛𝑛, 𝑛𝑛) = ∑ [ 1
√2𝜋𝜋√𝜎𝜎2(Δ𝑡𝑡) + 𝑛𝑛𝑛𝑛

𝑒𝑒
−1

2( 𝐿𝐿𝑖𝑖
2

𝜎𝜎2Δ𝑡𝑡+𝑛𝑛𝑛𝑛) (𝜆𝜆Δ𝑡𝑡)𝑛𝑛𝑒𝑒−(𝜆𝜆Δ𝑡𝑡)

𝑛𝑛! ] ,
∞

𝑛𝑛=0
∀    𝑖𝑖

= 1,2, … , 𝒩𝒩.     (𝐵𝐵6) 
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Under the assumption that the parameters 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂 are known, then the Fisher 

information on a single observation for the excess process 𝐼𝐼𝜇𝜇,Δ𝑡𝑡
𝐽𝐽𝐽𝐽  is defined as:  

𝐼𝐼𝜇𝜇,Δ𝑡𝑡
𝐽𝐽𝐽𝐽 = 𝐸𝐸 {{𝜕𝜕𝐿𝐿𝐿𝐿[𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖)]

∂𝜇𝜇 }
2

} , ∀    𝑖𝑖 = 1,2, … , 𝒩𝒩.           (𝐵𝐵7) 

Following Ait-Sahalia (2004) we have:  

𝐼𝐼𝜇𝜇,Δ𝑡𝑡
𝐽𝐽𝐽𝐽 = ∫ [𝜕𝜕𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖)

∂𝜇𝜇
1

𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖)]
2

𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖)𝑑𝑑𝐿𝐿𝑖𝑖
∞

−∞
,   

∀    𝑖𝑖 = 1,2, … , 𝒩𝒩, (𝐵𝐵8) 

where 𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖) is given by equation (B6), although with the terms inverted as it 

is the likelihood function for one observation, which can be also expressed as:   

𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖) = ∑ {𝑓𝑓𝑛𝑛(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖) (𝜆𝜆Δ𝑡𝑡)𝑛𝑛𝑒𝑒−(𝜆𝜆Δ𝑡𝑡)

𝐿𝐿! } , ∀    𝑖𝑖 = 1,2, … , 𝒩𝒩.
∞

𝑛𝑛=0
      (𝐵𝐵9) 

Before we proceed, notice that given the usual properties, the Fisher information for the 

entire sample 𝐼𝐼𝜇𝜇
𝐽𝐽𝐽𝐽 is obtained by scaling 𝐼𝐼𝜇𝜇,Δ𝑡𝑡

𝐽𝐽𝐽𝐽 :  

𝐼𝐼𝜇𝜇
𝐽𝐽𝐽𝐽 = 𝒩𝒩𝐼𝐼𝜇𝜇,Δ𝑡𝑡

𝐽𝐽𝐽𝐽 = 𝒩𝒩 {∫ [𝜕𝜕𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖)
∂𝜇𝜇

1
𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖)]

2
𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖)𝑑𝑑𝐿𝐿𝑖𝑖

∞

−∞
}.    (𝐵𝐵10) 

Now, calculating the partial derivative 𝜕𝜕𝜕𝜕(𝜇𝜇,𝜎𝜎,𝜆𝜆 𝛽𝛽,𝜂𝜂;𝐿𝐿𝑖𝑖)
∂𝜇𝜇  yields:  

𝜕𝜕𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖)
∂𝜇𝜇 = ∑ [ 1

√2𝜋𝜋√𝜎𝜎2Δ𝑡𝑡 + 𝐿𝐿𝜂𝜂
(𝜆𝜆Δ𝑡𝑡)𝑛𝑛𝑒𝑒−(𝜆𝜆Δ𝑡𝑡)

𝐿𝐿! 𝑒𝑒
−1

2( 𝐿𝐿𝑖𝑖
2

𝜎𝜎2Δ𝑡𝑡+𝑛𝑛𝜂𝜂)
( 𝐿𝐿𝑖𝑖Δt

𝜎𝜎2Δ𝑡𝑡 + 𝐿𝐿𝜂𝜂)] ,
∞

𝑛𝑛=0
 ∀    𝑖𝑖

= 1,2, … , 𝒩𝒩.    (𝐵𝐵11) 

From here, adapting the idea of Ait-Sahalia (2004) we impose two bounds to the Fisher 

information.  
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For the upper bound, the presence of jumps cannot increase the available information 

about 𝜇𝜇 compared with the case without jumps. Fisher information for the excess in the 

GBM case is given by (Appendix A):  

𝐼𝐼𝜇𝜇
𝐺𝐺𝐺𝐺𝐺𝐺 = 𝒩𝒩𝐼𝐼𝜇𝜇,Δ𝑡𝑡

𝐺𝐺𝐺𝐺𝐺𝐺 = 𝒩𝒩 Δ𝑡𝑡
𝜎𝜎2 = δ𝑡𝑡

𝜎𝜎2 .                                                  (𝐵𝐵12) 

Therefore, the first (upper) boundary for the entire sample Fisher information in the case 

of jumps 𝐼𝐼𝜇𝜇
𝐽𝐽𝐽𝐽 is given by: 

δ𝑡𝑡
𝜎𝜎2 ≥ 𝐼𝐼𝜇𝜇

𝐽𝐽𝐽𝐽.                                                              (𝐵𝐵13) 

The lower bound is obtained by integrating equation (B8) on a restricted subset of the 

real line, (−𝑎𝑎Δ𝑡𝑡, +𝑎𝑎Δ𝑡𝑡), yielding from the positivity of the integrand as in Ait-Sahalia (2004), 

such that: 

𝐼𝐼𝜇𝜇
𝐽𝐽𝐽𝐽 = 𝒩𝒩 ∫

[𝜕𝜕𝜕𝜕(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖)
∂𝜇𝜇 ]

2

𝜕𝜕(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖) 𝑑𝑑𝐿𝐿𝑖𝑖
∞

−∞
≥ 𝒩𝒩 ∫

[𝜕𝜕𝜕𝜕(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖)
∂𝜇𝜇 ]

2

𝜕𝜕(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖) 𝑑𝑑𝐿𝐿𝑖𝑖
𝑎𝑎Δ𝑡𝑡

−𝑎𝑎Δ𝑡𝑡
.          (𝐵𝐵14) 

We proceed to obtain an expression for this second boundary. For that, we set 𝑎𝑎Δt to 

be the positive solution of: 

𝜕𝜕0( 𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝑎𝑎Δ𝑡𝑡) = 𝜕𝜕1( 𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝑎𝑎Δ𝑡𝑡).                                (𝐵𝐵15) 

Replacing we have:  

1
√2𝜋𝜋𝜎𝜎2Δ𝑡𝑡

𝑒𝑒−1
2[(𝑎𝑎Δ𝑡𝑡)2

𝜎𝜎2Δ𝑡𝑡 ] = 1
√2𝜋𝜋(𝜎𝜎2Δ𝑡𝑡 + 𝜂𝜂)

𝑒𝑒−1
2[ (𝑎𝑎Δ𝑡𝑡)2

𝜎𝜎2Δ𝑡𝑡+𝜂𝜂].                    (𝐵𝐵16) 

Solving we have:  

𝑎𝑎Δ𝑡𝑡 = (Δ𝑡𝑡)
1
2(−𝜂𝜂)−1

2𝜎𝜎[𝐿𝐿𝐿𝐿(𝜎𝜎2Δ𝑡𝑡) − 𝐿𝐿𝐿𝐿(𝜎𝜎2Δ𝑡𝑡 + 𝜂𝜂)]
1
2(𝜎𝜎2Δ𝑡𝑡 + 𝜂𝜂)

1
2.            (𝐵𝐵17) 

Considering that:  

[𝐿𝐿𝐿𝐿(𝜎𝜎2Δ𝑡𝑡) − 𝐿𝐿𝐿𝐿(𝜎𝜎2Δ𝑡𝑡 + 𝜂𝜂)]
1
2 = [−𝐿𝐿𝐿𝐿 (1 + 𝜂𝜂

𝜎𝜎2Δ𝑡𝑡)]
1
2 ,                    (𝐵𝐵18) 
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then: 

𝑎𝑎Δ𝑡𝑡 = (Δ𝑡𝑡)
1
2(−𝜂𝜂)−1

2𝜎𝜎 [−𝐿𝐿𝐿𝐿 (1 + 𝜂𝜂
𝜎𝜎2Δ𝑡𝑡)]

1
2 (𝜎𝜎2Δ𝑡𝑡 + 𝜂𝜂)

1
2.                    (𝐵𝐵19) 

Solving: 

𝑎𝑎Δ𝑡𝑡 = (Δ𝑡𝑡)
1
2(𝜂𝜂 + 𝜎𝜎2Δ𝑡𝑡)

1
2𝜂𝜂−1

2𝜎𝜎 [𝐿𝐿𝐿𝐿 (1 + 𝜂𝜂
𝜎𝜎2Δ𝑡𝑡)]

1
2 .                       (𝐵𝐵20) 

For all 𝑦𝑦 ∈ (−𝑎𝑎Δt, +𝑎𝑎Δt) we have that:  

𝑓𝑓0(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖) > 𝑓𝑓1(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖) > ⋯ > 𝑓𝑓𝑛𝑛(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖).         (𝐵𝐵21) 

Following Ait-Sahalia (2004), given equation (B21) we have:  

1
𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖) ≥ 1

𝑓𝑓0(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖).                                  (𝐵𝐵22) 

Therefore:  

𝒩𝒩 ∫
[𝜕𝜕𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖)

∂𝜇𝜇 ]
2

𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖) 𝑑𝑑𝐿𝐿𝑖𝑖
𝑎𝑎Δ𝑡𝑡

−𝑎𝑎Δ𝑡𝑡
≥ 𝒩𝒩 ∫

[𝜕𝜕𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖)
∂𝜇𝜇 ]

2

𝑓𝑓0(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖) 𝑑𝑑𝐿𝐿𝑖𝑖
𝑎𝑎Δ𝑡𝑡

−𝑎𝑎Δ𝑡𝑡
      (𝐵𝐵23) 

The term to the right (the low boundary) is given by: 

𝒩𝒩 ∫
[𝜕𝜕𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖)

∂𝜇𝜇 ]
2

𝑓𝑓0(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖) 𝑑𝑑𝐿𝐿𝑖𝑖
𝑎𝑎Δ𝑡𝑡

−𝑎𝑎Δ𝑡𝑡

= 𝒩𝒩 ∫
{∑ { 1

√2𝜋𝜋√𝜎𝜎2Δ𝑡𝑡 + 𝐿𝐿𝜂𝜂
(𝜆𝜆Δ𝑡𝑡)𝑛𝑛𝑒𝑒−(𝜆𝜆Δ𝑡𝑡)

𝐿𝐿! 𝑒𝑒−1
2[ (𝐿𝐿𝑖𝑖)2

𝜎𝜎2Δ𝑡𝑡+𝑛𝑛𝑛𝑛] [ 𝐿𝐿𝑖𝑖Δt
𝜎𝜎2Δ𝑡𝑡 + 𝐿𝐿𝜂𝜂]}∞

𝑛𝑛=0 }
2

𝑓𝑓0(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖) 𝑑𝑑𝐿𝐿𝑖𝑖
𝑎𝑎Δ𝑡𝑡

−𝑎𝑎Δ𝑡𝑡
.    (𝐵𝐵24) 

Solving we have: 

𝒩𝒩 ∫
[𝜕𝜕𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖)

∂𝜇𝜇 ]
2

𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖) 𝑑𝑑𝐿𝐿𝑖𝑖
𝑎𝑎Δ𝑡𝑡

−𝑎𝑎Δ𝑡𝑡

= 𝒩𝒩 ∫ {{∑ {
(2𝜋𝜋)−1

4(𝜎𝜎2Δ𝑡𝑡)
1
4(𝜆𝜆Δ𝑡𝑡)𝑛𝑛𝑒𝑒−(𝜆𝜆Δ𝑡𝑡)

[𝜎𝜎2Δ𝑡𝑡 + 𝐿𝐿𝜂𝜂]
3
2𝐿𝐿!

(𝐿𝐿𝑖𝑖)Δ𝑡𝑡𝑒𝑒−1
2[ (𝐿𝐿𝑖𝑖)2

𝜎𝜎2Δ𝑡𝑡+𝑛𝑛𝑛𝑛]+1
4[(𝐿𝐿𝑖𝑖)2

𝜎𝜎2Δ𝑡𝑡]}
∞

𝑛𝑛=0
}

2

} 𝑑𝑑𝐿𝐿𝑖𝑖
𝑎𝑎Δ𝑡𝑡

−𝑎𝑎Δ𝑡𝑡
 .  (𝐵𝐵25) 

then: 

𝑎𝑎Δ𝑡𝑡 = (Δ𝑡𝑡)
1
2(−𝜂𝜂)−1

2𝜎𝜎 [−𝐿𝐿𝐿𝐿 (1 + 𝜂𝜂
𝜎𝜎2Δ𝑡𝑡)]

1
2 (𝜎𝜎2Δ𝑡𝑡 + 𝜂𝜂)

1
2.                    (𝐵𝐵19) 

Solving: 

𝑎𝑎Δ𝑡𝑡 = (Δ𝑡𝑡)
1
2(𝜂𝜂 + 𝜎𝜎2Δ𝑡𝑡)

1
2𝜂𝜂−1

2𝜎𝜎 [𝐿𝐿𝐿𝐿 (1 + 𝜂𝜂
𝜎𝜎2Δ𝑡𝑡)]

1
2 .                       (𝐵𝐵20) 

For all 𝑦𝑦 ∈ (−𝑎𝑎Δt, +𝑎𝑎Δt) we have that:  

𝑓𝑓0(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖) > 𝑓𝑓1(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖) > ⋯ > 𝑓𝑓𝑛𝑛(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖).         (𝐵𝐵21) 

Following Ait-Sahalia (2004), given equation (B21) we have:  

1
𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖) ≥ 1

𝑓𝑓0(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖).                                  (𝐵𝐵22) 

Therefore:  

𝒩𝒩 ∫
[𝜕𝜕𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖)

∂𝜇𝜇 ]
2

𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖) 𝑑𝑑𝐿𝐿𝑖𝑖
𝑎𝑎Δ𝑡𝑡

−𝑎𝑎Δ𝑡𝑡
≥ 𝒩𝒩 ∫

[𝜕𝜕𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖)
∂𝜇𝜇 ]

2

𝑓𝑓0(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖) 𝑑𝑑𝐿𝐿𝑖𝑖
𝑎𝑎Δ𝑡𝑡

−𝑎𝑎Δ𝑡𝑡
      (𝐵𝐵23) 

The term to the right (the low boundary) is given by: 

𝒩𝒩 ∫
[𝜕𝜕𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖)

∂𝜇𝜇 ]
2

𝑓𝑓0(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖) 𝑑𝑑𝐿𝐿𝑖𝑖
𝑎𝑎Δ𝑡𝑡

−𝑎𝑎Δ𝑡𝑡

= 𝒩𝒩 ∫
{∑ { 1

√2𝜋𝜋√𝜎𝜎2Δ𝑡𝑡 + 𝐿𝐿𝜂𝜂
(𝜆𝜆Δ𝑡𝑡)𝑛𝑛𝑒𝑒−(𝜆𝜆Δ𝑡𝑡)

𝐿𝐿! 𝑒𝑒−1
2[ (𝐿𝐿𝑖𝑖)2

𝜎𝜎2Δ𝑡𝑡+𝑛𝑛𝑛𝑛] [ 𝐿𝐿𝑖𝑖Δt
𝜎𝜎2Δ𝑡𝑡 + 𝐿𝐿𝜂𝜂]}∞

𝑛𝑛=0 }
2

𝑓𝑓0(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖) 𝑑𝑑𝐿𝐿𝑖𝑖
𝑎𝑎Δ𝑡𝑡

−𝑎𝑎Δ𝑡𝑡
.    (𝐵𝐵24) 

Solving we have: 

𝒩𝒩 ∫
[𝜕𝜕𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖)

∂𝜇𝜇 ]
2

𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖) 𝑑𝑑𝐿𝐿𝑖𝑖
𝑎𝑎Δ𝑡𝑡

−𝑎𝑎Δ𝑡𝑡

= 𝒩𝒩 ∫ {{∑ {
(2𝜋𝜋)−1

4(𝜎𝜎2Δ𝑡𝑡)
1
4(𝜆𝜆Δ𝑡𝑡)𝑛𝑛𝑒𝑒−(𝜆𝜆Δ𝑡𝑡)

[𝜎𝜎2Δ𝑡𝑡 + 𝐿𝐿𝜂𝜂]
3
2𝐿𝐿!

(𝐿𝐿𝑖𝑖)Δ𝑡𝑡𝑒𝑒−1
2[ (𝐿𝐿𝑖𝑖)2

𝜎𝜎2Δ𝑡𝑡+𝑛𝑛𝑛𝑛]+1
4[(𝐿𝐿𝑖𝑖)2

𝜎𝜎2Δ𝑡𝑡]}
∞

𝑛𝑛=0
}

2

} 𝑑𝑑𝐿𝐿𝑖𝑖
𝑎𝑎Δ𝑡𝑡

−𝑎𝑎Δ𝑡𝑡
 .  (𝐵𝐵25) 

then: 

𝑎𝑎Δ𝑡𝑡 = (Δ𝑡𝑡)
1
2(−𝜂𝜂)−1

2𝜎𝜎 [−𝐿𝐿𝐿𝐿 (1 + 𝜂𝜂
𝜎𝜎2Δ𝑡𝑡)]

1
2 (𝜎𝜎2Δ𝑡𝑡 + 𝜂𝜂)

1
2.                    (𝐵𝐵19) 

Solving: 

𝑎𝑎Δ𝑡𝑡 = (Δ𝑡𝑡)
1
2(𝜂𝜂 + 𝜎𝜎2Δ𝑡𝑡)

1
2𝜂𝜂−1

2𝜎𝜎 [𝐿𝐿𝐿𝐿 (1 + 𝜂𝜂
𝜎𝜎2Δ𝑡𝑡)]

1
2 .                       (𝐵𝐵20) 

For all 𝑦𝑦 ∈ (−𝑎𝑎Δt, +𝑎𝑎Δt) we have that:  

𝑓𝑓0(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖) > 𝑓𝑓1(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖) > ⋯ > 𝑓𝑓𝑛𝑛(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖).         (𝐵𝐵21) 

Following Ait-Sahalia (2004), given equation (B21) we have:  

1
𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖) ≥ 1

𝑓𝑓0(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖).                                  (𝐵𝐵22) 

Therefore:  

𝒩𝒩 ∫
[𝜕𝜕𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖)

∂𝜇𝜇 ]
2

𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖) 𝑑𝑑𝐿𝐿𝑖𝑖
𝑎𝑎Δ𝑡𝑡

−𝑎𝑎Δ𝑡𝑡
≥ 𝒩𝒩 ∫

[𝜕𝜕𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖)
∂𝜇𝜇 ]

2

𝑓𝑓0(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖) 𝑑𝑑𝐿𝐿𝑖𝑖
𝑎𝑎Δ𝑡𝑡

−𝑎𝑎Δ𝑡𝑡
      (𝐵𝐵23) 

The term to the right (the low boundary) is given by: 

𝒩𝒩 ∫
[𝜕𝜕𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖)

∂𝜇𝜇 ]
2

𝑓𝑓0(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖) 𝑑𝑑𝐿𝐿𝑖𝑖
𝑎𝑎Δ𝑡𝑡

−𝑎𝑎Δ𝑡𝑡

= 𝒩𝒩 ∫
{∑ { 1

√2𝜋𝜋√𝜎𝜎2Δ𝑡𝑡 + 𝐿𝐿𝜂𝜂
(𝜆𝜆Δ𝑡𝑡)𝑛𝑛𝑒𝑒−(𝜆𝜆Δ𝑡𝑡)

𝐿𝐿! 𝑒𝑒−1
2[ (𝐿𝐿𝑖𝑖)2

𝜎𝜎2Δ𝑡𝑡+𝑛𝑛𝑛𝑛] [ 𝐿𝐿𝑖𝑖Δt
𝜎𝜎2Δ𝑡𝑡 + 𝐿𝐿𝜂𝜂]}∞

𝑛𝑛=0 }
2

𝑓𝑓0(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖) 𝑑𝑑𝐿𝐿𝑖𝑖
𝑎𝑎Δ𝑡𝑡

−𝑎𝑎Δ𝑡𝑡
.    (𝐵𝐵24) 

Solving we have: 

𝒩𝒩 ∫
[𝜕𝜕𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖)

∂𝜇𝜇 ]
2

𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖) 𝑑𝑑𝐿𝐿𝑖𝑖
𝑎𝑎Δ𝑡𝑡

−𝑎𝑎Δ𝑡𝑡

= 𝒩𝒩 ∫ {{∑ {
(2𝜋𝜋)−1

4(𝜎𝜎2Δ𝑡𝑡)
1
4(𝜆𝜆Δ𝑡𝑡)𝑛𝑛𝑒𝑒−(𝜆𝜆Δ𝑡𝑡)

[𝜎𝜎2Δ𝑡𝑡 + 𝐿𝐿𝜂𝜂]
3
2𝐿𝐿!

(𝐿𝐿𝑖𝑖)Δ𝑡𝑡𝑒𝑒−1
2[ (𝐿𝐿𝑖𝑖)2

𝜎𝜎2Δ𝑡𝑡+𝑛𝑛𝑛𝑛]+1
4[(𝐿𝐿𝑖𝑖)2

𝜎𝜎2Δ𝑡𝑡]}
∞

𝑛𝑛=0
}

2

} 𝑑𝑑𝐿𝐿𝑖𝑖
𝑎𝑎Δ𝑡𝑡

−𝑎𝑎Δ𝑡𝑡
 .  (𝐵𝐵25) 

then: 

𝑎𝑎Δ𝑡𝑡 = (Δ𝑡𝑡)
1
2(−𝜂𝜂)−1

2𝜎𝜎 [−𝐿𝐿𝐿𝐿 (1 + 𝜂𝜂
𝜎𝜎2Δ𝑡𝑡)]

1
2 (𝜎𝜎2Δ𝑡𝑡 + 𝜂𝜂)

1
2.                    (𝐵𝐵19) 

Solving: 

𝑎𝑎Δ𝑡𝑡 = (Δ𝑡𝑡)
1
2(𝜂𝜂 + 𝜎𝜎2Δ𝑡𝑡)

1
2𝜂𝜂−1

2𝜎𝜎 [𝐿𝐿𝐿𝐿 (1 + 𝜂𝜂
𝜎𝜎2Δ𝑡𝑡)]

1
2 .                       (𝐵𝐵20) 

For all 𝑦𝑦 ∈ (−𝑎𝑎Δt, +𝑎𝑎Δt) we have that:  

𝑓𝑓0(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖) > 𝑓𝑓1(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖) > ⋯ > 𝑓𝑓𝑛𝑛(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖).         (𝐵𝐵21) 

Following Ait-Sahalia (2004), given equation (B21) we have:  

1
𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖) ≥ 1

𝑓𝑓0(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖).                                  (𝐵𝐵22) 

Therefore:  

𝒩𝒩 ∫
[𝜕𝜕𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖)

∂𝜇𝜇 ]
2

𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖) 𝑑𝑑𝐿𝐿𝑖𝑖
𝑎𝑎Δ𝑡𝑡

−𝑎𝑎Δ𝑡𝑡
≥ 𝒩𝒩 ∫

[𝜕𝜕𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖)
∂𝜇𝜇 ]

2

𝑓𝑓0(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖) 𝑑𝑑𝐿𝐿𝑖𝑖
𝑎𝑎Δ𝑡𝑡

−𝑎𝑎Δ𝑡𝑡
      (𝐵𝐵23) 

The term to the right (the low boundary) is given by: 

𝒩𝒩 ∫
[𝜕𝜕𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖)

∂𝜇𝜇 ]
2

𝑓𝑓0(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖) 𝑑𝑑𝐿𝐿𝑖𝑖
𝑎𝑎Δ𝑡𝑡

−𝑎𝑎Δ𝑡𝑡

= 𝒩𝒩 ∫
{∑ { 1

√2𝜋𝜋√𝜎𝜎2Δ𝑡𝑡 + 𝐿𝐿𝜂𝜂
(𝜆𝜆Δ𝑡𝑡)𝑛𝑛𝑒𝑒−(𝜆𝜆Δ𝑡𝑡)

𝐿𝐿! 𝑒𝑒−1
2[ (𝐿𝐿𝑖𝑖)2

𝜎𝜎2Δ𝑡𝑡+𝑛𝑛𝑛𝑛] [ 𝐿𝐿𝑖𝑖Δt
𝜎𝜎2Δ𝑡𝑡 + 𝐿𝐿𝜂𝜂]}∞

𝑛𝑛=0 }
2

𝑓𝑓0(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖) 𝑑𝑑𝐿𝐿𝑖𝑖
𝑎𝑎Δ𝑡𝑡

−𝑎𝑎Δ𝑡𝑡
.    (𝐵𝐵24) 

Solving we have: 

𝒩𝒩 ∫
[𝜕𝜕𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖)

∂𝜇𝜇 ]
2

𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖) 𝑑𝑑𝐿𝐿𝑖𝑖
𝑎𝑎Δ𝑡𝑡

−𝑎𝑎Δ𝑡𝑡

= 𝒩𝒩 ∫ {{∑ {
(2𝜋𝜋)−1

4(𝜎𝜎2Δ𝑡𝑡)
1
4(𝜆𝜆Δ𝑡𝑡)𝑛𝑛𝑒𝑒−(𝜆𝜆Δ𝑡𝑡)

[𝜎𝜎2Δ𝑡𝑡 + 𝐿𝐿𝜂𝜂]
3
2𝐿𝐿!

(𝐿𝐿𝑖𝑖)Δ𝑡𝑡𝑒𝑒−1
2[ (𝐿𝐿𝑖𝑖)2

𝜎𝜎2Δ𝑡𝑡+𝑛𝑛𝑛𝑛]+1
4[(𝐿𝐿𝑖𝑖)2

𝜎𝜎2Δ𝑡𝑡]}
∞

𝑛𝑛=0
}

2

} 𝑑𝑑𝐿𝐿𝑖𝑖
𝑎𝑎Δ𝑡𝑡

−𝑎𝑎Δ𝑡𝑡
 .  (𝐵𝐵25) 

then: 

𝑎𝑎Δ𝑡𝑡 = (Δ𝑡𝑡)
1
2(−𝜂𝜂)−1

2𝜎𝜎 [−𝐿𝐿𝐿𝐿 (1 + 𝜂𝜂
𝜎𝜎2Δ𝑡𝑡)]

1
2 (𝜎𝜎2Δ𝑡𝑡 + 𝜂𝜂)

1
2.                    (𝐵𝐵19) 

Solving: 

𝑎𝑎Δ𝑡𝑡 = (Δ𝑡𝑡)
1
2(𝜂𝜂 + 𝜎𝜎2Δ𝑡𝑡)

1
2𝜂𝜂−1

2𝜎𝜎 [𝐿𝐿𝐿𝐿 (1 + 𝜂𝜂
𝜎𝜎2Δ𝑡𝑡)]

1
2 .                       (𝐵𝐵20) 

For all 𝑦𝑦 ∈ (−𝑎𝑎Δt, +𝑎𝑎Δt) we have that:  

𝑓𝑓0(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖) > 𝑓𝑓1(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖) > ⋯ > 𝑓𝑓𝑛𝑛(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖).         (𝐵𝐵21) 

Following Ait-Sahalia (2004), given equation (B21) we have:  

1
𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖) ≥ 1

𝑓𝑓0(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖).                                  (𝐵𝐵22) 

Therefore:  

𝒩𝒩 ∫
[𝜕𝜕𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖)

∂𝜇𝜇 ]
2

𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖) 𝑑𝑑𝐿𝐿𝑖𝑖
𝑎𝑎Δ𝑡𝑡

−𝑎𝑎Δ𝑡𝑡
≥ 𝒩𝒩 ∫

[𝜕𝜕𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖)
∂𝜇𝜇 ]

2

𝑓𝑓0(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖) 𝑑𝑑𝐿𝐿𝑖𝑖
𝑎𝑎Δ𝑡𝑡

−𝑎𝑎Δ𝑡𝑡
      (𝐵𝐵23) 

The term to the right (the low boundary) is given by: 

𝒩𝒩 ∫
[𝜕𝜕𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖)

∂𝜇𝜇 ]
2

𝑓𝑓0(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖) 𝑑𝑑𝐿𝐿𝑖𝑖
𝑎𝑎Δ𝑡𝑡

−𝑎𝑎Δ𝑡𝑡

= 𝒩𝒩 ∫
{∑ { 1

√2𝜋𝜋√𝜎𝜎2Δ𝑡𝑡 + 𝐿𝐿𝜂𝜂
(𝜆𝜆Δ𝑡𝑡)𝑛𝑛𝑒𝑒−(𝜆𝜆Δ𝑡𝑡)

𝐿𝐿! 𝑒𝑒−1
2[ (𝐿𝐿𝑖𝑖)2

𝜎𝜎2Δ𝑡𝑡+𝑛𝑛𝑛𝑛] [ 𝐿𝐿𝑖𝑖Δt
𝜎𝜎2Δ𝑡𝑡 + 𝐿𝐿𝜂𝜂]}∞

𝑛𝑛=0 }
2

𝑓𝑓0(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖) 𝑑𝑑𝐿𝐿𝑖𝑖
𝑎𝑎Δ𝑡𝑡

−𝑎𝑎Δ𝑡𝑡
.    (𝐵𝐵24) 

Solving we have: 

𝒩𝒩 ∫
[𝜕𝜕𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖)

∂𝜇𝜇 ]
2

𝑓𝑓(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖) 𝑑𝑑𝐿𝐿𝑖𝑖
𝑎𝑎Δ𝑡𝑡

−𝑎𝑎Δ𝑡𝑡

= 𝒩𝒩 ∫ {{∑ {
(2𝜋𝜋)−1

4(𝜎𝜎2Δ𝑡𝑡)
1
4(𝜆𝜆Δ𝑡𝑡)𝑛𝑛𝑒𝑒−(𝜆𝜆Δ𝑡𝑡)

[𝜎𝜎2Δ𝑡𝑡 + 𝐿𝐿𝜂𝜂]
3
2𝐿𝐿!

(𝐿𝐿𝑖𝑖)Δ𝑡𝑡𝑒𝑒−1
2[ (𝐿𝐿𝑖𝑖)2

𝜎𝜎2Δ𝑡𝑡+𝑛𝑛𝑛𝑛]+1
4[(𝐿𝐿𝑖𝑖)2

𝜎𝜎2Δ𝑡𝑡]}
∞

𝑛𝑛=0
}

2

} 𝑑𝑑𝐿𝐿𝑖𝑖
𝑎𝑎Δ𝑡𝑡

−𝑎𝑎Δ𝑡𝑡
 .  (𝐵𝐵25) 
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Denoting:  

𝑔𝑔𝑛𝑛(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖) =
(2𝜋𝜋)−1

4(𝜎𝜎2Δ𝑡𝑡)
1
4(𝜆𝜆Δ𝑡𝑡)𝑛𝑛𝑒𝑒−(𝜆𝜆Δ𝑡𝑡)

[𝜎𝜎2Δ𝑡𝑡 + 𝑛𝑛𝜂𝜂]
3
2𝑛𝑛!

 𝑒𝑒−1
2[ (𝐿𝐿𝑖𝑖)2

𝜎𝜎2Δ𝑡𝑡+𝑛𝑛𝑛𝑛]+1
4[(𝐿𝐿𝑖𝑖)2

𝜎𝜎2Δ𝑡𝑡]𝐿𝐿𝑖𝑖Δ𝑡𝑡,     (𝐵𝐵26) 

then: 

𝒩𝒩 ∫
[𝜕𝜕𝜕𝜕(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖)

∂𝜇𝜇 ]
2

𝜕𝜕(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖) 𝑑𝑑𝐿𝐿𝑖𝑖
𝑎𝑎Δ𝑡𝑡

−𝑎𝑎Δ𝑡𝑡
= 𝒩𝒩 ∫ {[∑ 𝑔𝑔𝑛𝑛(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖)

∞

𝑛𝑛=0
]

2

} 𝑑𝑑𝐿𝐿𝑖𝑖
𝑎𝑎Δ𝑡𝑡

−𝑎𝑎Δ𝑡𝑡
.     (𝐵𝐵27) 

Following Ait-Sahalia (2004), we have that:  

𝒩𝒩 ∫ {[∑ 𝑔𝑔𝑛𝑛(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖)
∞

𝑛𝑛=0
]

2

} 𝑑𝑑𝐿𝐿𝑖𝑖
𝑎𝑎Δ𝑡𝑡

−𝑎𝑎Δ𝑡𝑡

= ∑ ∑ 𝒩𝒩 ∫ 𝑔𝑔𝑛𝑛(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖)𝑔𝑔𝑚𝑚(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖)
𝑎𝑎Δ𝑡𝑡

−𝑎𝑎Δ𝑡𝑡

∞

𝑚𝑚=0

∞

𝑛𝑛=0
𝑑𝑑𝐿𝐿𝑖𝑖.   (𝐵𝐵28) 

We proceed to solve the integral of the right-hand side for any 𝑛𝑛 and 𝑚𝑚. The expressions 

for 𝑛𝑛 and for 𝑚𝑚 are: 

𝑔𝑔𝑛𝑛 ≡ 𝑔𝑔𝑛𝑛( 𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖)

=
(2𝜋𝜋)−1

4(𝜎𝜎2Δ𝑡𝑡)
1
4(𝜆𝜆Δ𝑡𝑡)𝑛𝑛𝑒𝑒−(𝜆𝜆Δ𝑡𝑡)

[𝜎𝜎2Δ𝑡𝑡 + 𝑛𝑛𝜂𝜂]
3
2𝑛𝑛!

 𝑒𝑒−1
2[ (𝐿𝐿𝑖𝑖)2

𝜎𝜎2Δ𝑡𝑡+𝑛𝑛𝑛𝑛]+1
4[(𝐿𝐿𝑖𝑖)2

𝜎𝜎2Δ𝑡𝑡]𝐿𝐿𝑖𝑖Δ𝑡𝑡,                  (𝐵𝐵29) 

 

𝑔𝑔𝑚𝑚 ≡ 𝑔𝑔𝑚𝑚(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖)

=
(2𝜋𝜋)−1

4(𝜎𝜎2Δ𝑡𝑡)
1
4(𝜆𝜆Δ𝑡𝑡)𝑚𝑚𝑒𝑒−(𝜆𝜆Δ𝑡𝑡)

[𝜎𝜎2Δ𝑡𝑡 + 𝑚𝑚𝜂𝜂]
3
2𝑚𝑚!

 𝑒𝑒−1
2[ (𝐿𝐿𝑖𝑖)2

𝜎𝜎2Δ𝑡𝑡+𝑚𝑚𝑛𝑛]+1
4[(𝐿𝐿𝑖𝑖)2

𝜎𝜎2Δ𝑡𝑡]𝐿𝐿𝑖𝑖Δ𝑡𝑡.                (𝐵𝐵30) 

 

And so, the integral to be solved is given by: 
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𝒩𝒩 ∫ 𝑔𝑔𝑛𝑛𝑔𝑔𝑚𝑚
𝑎𝑎Δ𝑡𝑡

−𝑎𝑎Δ𝑡𝑡
𝑑𝑑𝐿𝐿𝑖𝑖

= 𝒩𝒩
(2𝜋𝜋)−1

2(𝜎𝜎2Δ𝑡𝑡)
1
2(𝜆𝜆Δ𝑡𝑡)𝑛𝑛+𝑚𝑚𝑒𝑒−2(𝜆𝜆Δ𝑡𝑡)

[𝜎𝜎2Δ𝑡𝑡 + 𝑛𝑛𝑛𝑛]
3
2[𝜎𝜎2Δ𝑡𝑡 + 𝑚𝑚𝑛𝑛]

3
2𝑛𝑛!𝑚𝑚!

(Δ𝑡𝑡)2 ∫ { 𝐿𝐿𝑖𝑖
2𝑒𝑒−𝐿𝐿𝑖𝑖

2

2
𝜎𝜎4(Δ𝑡𝑡)2−𝑛𝑛𝑚𝑚𝜂𝜂2

(𝜎𝜎2Δ𝑡𝑡+𝑛𝑛𝜂𝜂)(𝜎𝜎2Δ𝑡𝑡+𝑚𝑚𝜂𝜂)(𝜎𝜎2Δ𝑡𝑡)  }
𝑎𝑎Δ

−𝑎𝑎Δ
𝑑𝑑𝐿𝐿𝑖𝑖.    (𝐵𝐵31) 

Solving the integral, we obtain: 

𝒩𝒩 ∫ 𝑔𝑔𝑛𝑛𝑔𝑔𝑚𝑚
𝑎𝑎Δ𝑡𝑡

−𝑎𝑎Δ𝑡𝑡
𝑑𝑑𝐿𝐿𝑖𝑖

= 𝛿𝛿𝑡𝑡
(2𝜋𝜋)−1

2(𝜎𝜎2Δ𝑡𝑡)
1
2(𝜆𝜆Δ𝑡𝑡)𝑛𝑛+𝑚𝑚𝑒𝑒−2(𝜆𝜆Δ𝑡𝑡)

[𝜎𝜎2Δ𝑡𝑡 + 𝑛𝑛𝑛𝑛]
3
2[𝜎𝜎2Δ𝑡𝑡 + 𝑚𝑚𝑛𝑛]

3
2𝑛𝑛!𝑚𝑚!

Δ𝑡𝑡

[
 
 
 
 √2𝜋𝜋 erf (𝑎𝑎𝛥𝛥𝑡𝑡√𝑏𝑏

√2 )

𝑏𝑏
3
2

− 2𝑎𝑎Δ𝑒𝑒−(𝑎𝑎Δ)2𝑏𝑏  
2

𝑏𝑏
]
 
 
 
 
,   (𝐵𝐵32) 

where: 

𝑏𝑏 = 𝜎𝜎4(Δ𝑡𝑡)2 − 𝑛𝑛𝑚𝑚𝑛𝑛2

(𝜎𝜎2Δ𝑡𝑡 + 𝑛𝑛𝑛𝑛)(𝜎𝜎2Δ𝑡𝑡 + 𝑚𝑚𝑛𝑛)(𝜎𝜎2Δ𝑡𝑡),                               (𝐵𝐵33) 

𝑎𝑎Δ = (Δt)
1
2(𝑛𝑛 + Δt𝜎𝜎2)

1
2𝜎𝜎𝑛𝑛−1

2 [𝐿𝐿𝑛𝑛 (1 + 𝑛𝑛
Δ𝑡𝑡𝜎𝜎2)]

1
2 .                         (𝐵𝐵34) 

When Δ𝑡𝑡 → 0, equations (B32), (B33) and (B34) produce a value different from zero 

only when 𝑛𝑛 = 𝑚𝑚 = 0 . Therefore:   

lim
Δ𝑡𝑡→0

{∑ ∑ 𝒩𝒩 ∫ 𝑔𝑔𝑛𝑛𝑔𝑔𝑚𝑚
𝑎𝑎Δ𝑡𝑡

−𝑎𝑎Δ𝑡𝑡

∞

𝑚𝑚=0

∞

𝑛𝑛=0
𝑑𝑑𝐿𝐿𝑖𝑖} = lim

Δ𝑡𝑡→0
{𝒩𝒩 ∫ [𝑔𝑔0(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝑛𝑛; 𝐿𝐿𝑖𝑖)]2𝑑𝑑𝐿𝐿𝑖𝑖

𝑎𝑎Δ𝑡𝑡

−𝑎𝑎Δ
} + 𝑂𝑂(Δ𝑡𝑡).      (𝐵𝐵35) 

Finally, notice that:  

 

 
6 This is done numerically by building the function, assigning a number to the parameters, and then 
looking that for extremely low values of Δ𝑡𝑡 the only combination that gives a number different to 
zero is in fact the case 𝑛𝑛 = 𝑚𝑚 = 0.  

𝒩𝒩 ∫ 𝑔𝑔𝑛𝑛𝑔𝑔𝑚𝑚
𝑎𝑎Δ𝑡𝑡

−𝑎𝑎Δ𝑡𝑡
𝑑𝑑𝐿𝐿𝑖𝑖

= 𝒩𝒩
(2𝜋𝜋)−1

2(𝜎𝜎2Δ𝑡𝑡)
1
2(𝜆𝜆Δ𝑡𝑡)𝑛𝑛+𝑚𝑚𝑒𝑒−2(𝜆𝜆Δ𝑡𝑡)

[𝜎𝜎2Δ𝑡𝑡 + 𝑛𝑛𝑛𝑛]
3
2[𝜎𝜎2Δ𝑡𝑡 + 𝑚𝑚𝑛𝑛]

3
2𝑛𝑛!𝑚𝑚!

(Δ𝑡𝑡)2 ∫ { 𝐿𝐿𝑖𝑖
2𝑒𝑒−𝐿𝐿𝑖𝑖

2

2
𝜎𝜎4(Δ𝑡𝑡)2−𝑛𝑛𝑚𝑚𝜂𝜂2

(𝜎𝜎2Δ𝑡𝑡+𝑛𝑛𝜂𝜂)(𝜎𝜎2Δ𝑡𝑡+𝑚𝑚𝜂𝜂)(𝜎𝜎2Δ𝑡𝑡)  }
𝑎𝑎Δ

−𝑎𝑎Δ
𝑑𝑑𝐿𝐿𝑖𝑖.    (𝐵𝐵31) 

Solving the integral, we obtain: 

𝒩𝒩 ∫ 𝑔𝑔𝑛𝑛𝑔𝑔𝑚𝑚
𝑎𝑎Δ𝑡𝑡

−𝑎𝑎Δ𝑡𝑡
𝑑𝑑𝐿𝐿𝑖𝑖

= 𝛿𝛿𝑡𝑡
(2𝜋𝜋)−1

2(𝜎𝜎2Δ𝑡𝑡)
1
2(𝜆𝜆Δ𝑡𝑡)𝑛𝑛+𝑚𝑚𝑒𝑒−2(𝜆𝜆Δ𝑡𝑡)

[𝜎𝜎2Δ𝑡𝑡 + 𝑛𝑛𝑛𝑛]
3
2[𝜎𝜎2Δ𝑡𝑡 + 𝑚𝑚𝑛𝑛]

3
2𝑛𝑛!𝑚𝑚!

Δ𝑡𝑡

[
 
 
 
 √2𝜋𝜋 erf (𝑎𝑎𝛥𝛥𝑡𝑡√𝑏𝑏

√2 )

𝑏𝑏
3
2

− 2𝑎𝑎Δ𝑒𝑒−(𝑎𝑎Δ)2𝑏𝑏  
2

𝑏𝑏
]
 
 
 
 
,   (𝐵𝐵32) 

where: 

𝑏𝑏 = 𝜎𝜎4(Δ𝑡𝑡)2 − 𝑛𝑛𝑚𝑚𝑛𝑛2

(𝜎𝜎2Δ𝑡𝑡 + 𝑛𝑛𝑛𝑛)(𝜎𝜎2Δ𝑡𝑡 + 𝑚𝑚𝑛𝑛)(𝜎𝜎2Δ𝑡𝑡),                               (𝐵𝐵33) 

𝑎𝑎Δ = (Δt)
1
2(𝑛𝑛 + Δt𝜎𝜎2)

1
2𝜎𝜎𝑛𝑛−1

2 [𝐿𝐿𝑛𝑛 (1 + 𝑛𝑛
Δ𝑡𝑡𝜎𝜎2)]

1
2 .                         (𝐵𝐵34) 

When Δ𝑡𝑡 → 0, equations (B32), (B33) and (B34) produce a value different from zero 

only when 𝑛𝑛 = 𝑚𝑚 = 0 . Therefore:   

lim
Δ𝑡𝑡→0

{∑ ∑ 𝒩𝒩 ∫ 𝑔𝑔𝑛𝑛𝑔𝑔𝑚𝑚
𝑎𝑎Δ𝑡𝑡

−𝑎𝑎Δ𝑡𝑡

∞

𝑚𝑚=0

∞

𝑛𝑛=0
𝑑𝑑𝐿𝐿𝑖𝑖} = lim

Δ𝑡𝑡→0
{𝒩𝒩 ∫ [𝑔𝑔0(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝑛𝑛; 𝐿𝐿𝑖𝑖)]2𝑑𝑑𝐿𝐿𝑖𝑖

𝑎𝑎Δ𝑡𝑡

−𝑎𝑎Δ
} + 𝑂𝑂(Δ𝑡𝑡).      (𝐵𝐵35) 

Finally, notice that:  

 

 
6 This is done numerically by building the function, assigning a number to the parameters, and then 
looking that for extremely low values of Δ𝑡𝑡 the only combination that gives a number different to 
zero is in fact the case 𝑛𝑛 = 𝑚𝑚 = 0.  
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𝒩𝒩∫ (𝑔𝑔0)2 𝑑𝑑𝐿𝐿𝑖𝑖
𝑎𝑎Δ𝑡𝑡

−𝑎𝑎Δ
= 𝛿𝛿𝛿𝛿

(2𝜋𝜋)−
1
2(Δ𝛿𝛿)

1
2𝑒𝑒−2(𝜆𝜆Δ𝑡𝑡)

𝜎𝜎5(Δ𝛿𝛿)2
[
 
 
 
 √2𝜋𝜋 erf (𝑎𝑎𝛥𝛥𝑡𝑡√𝑏𝑏√2

)

𝑏𝑏
3
2

− 2𝑎𝑎Δ𝑒𝑒
−(𝑎𝑎Δ)

2𝑏𝑏  
2

𝑏𝑏
]
 
 
 
 
    (𝐵𝐵36) 

where: 

𝑏𝑏 = 𝜎𝜎
4(Δ𝛿𝛿)2
(𝜎𝜎2Δ𝛿𝛿)3 =

𝜎𝜎4(Δ𝛿𝛿)2
𝜎𝜎6(Δ𝛿𝛿)3 =

1
𝜎𝜎2Δ𝛿𝛿                                             (𝐵𝐵37) 

𝑎𝑎Δ = (Δt)
1
2(𝜂𝜂 + Δt𝜎𝜎2)𝜎𝜎𝜂𝜂−

1
2 [𝐿𝐿𝐿𝐿 (1 + 𝜂𝜂

Δ𝛿𝛿𝜎𝜎2)]
1
2                                (𝐵𝐵38) 

Replacing 𝑏𝑏 and 𝑎𝑎Δ in equation (B36) we obtain:  

𝒩𝒩∫ (𝑔𝑔0)2 𝑑𝑑𝐿𝐿𝑖𝑖
𝑎𝑎Δ𝑡𝑡

−𝑎𝑎Δ
 

=  𝛿𝛿𝛿𝛿𝜎𝜎2 𝑒𝑒
−2(𝜆𝜆Δ𝑡𝑡)

{ 
 
  
erf

{ 
 
  (𝜂𝜂 + Δt𝜎𝜎2)

1
2𝜂𝜂−

1
2 [𝐿𝐿𝐿𝐿 (1 + 𝜂𝜂

Δ𝛿𝛿𝜎𝜎2)]
1
2 

√2
} 
 
  

− 2(2𝜋𝜋)−
1
2(𝜂𝜂

+ Δt𝜎𝜎2)
1
2𝜂𝜂−

1
2 [𝐿𝐿𝐿𝐿 (1 + 𝜂𝜂

Δ𝛿𝛿𝜎𝜎2)]
1
2 𝑒𝑒−

{(𝜂𝜂+Δt𝜎𝜎2)
1
2𝜂𝜂−

1
2[𝐿𝐿𝐿𝐿(1+ 𝜂𝜂

Δ𝑡𝑡𝜎𝜎2)]
1
2 }

2

  

2

} 
 
  
  (𝐵𝐵39) 

And taking the limit when Δ𝛿𝛿 → 0 then: 

lim
Δ𝑡𝑡→0

[𝑒𝑒−2(𝜆𝜆𝛥𝛥𝑡𝑡)] = 1,                                                            

lim
Δ𝑡𝑡→0

{ 
 
  
erf

{ 
 
  (𝜂𝜂 + Δt𝜎𝜎2)

1
2𝜂𝜂−

1
2 [𝐿𝐿𝐿𝐿 (1 + 𝐿𝐿

Δ𝛿𝛿𝜎𝜎2)]
1
2

√2
} 
 
  

} 
 
  
= 1,                     (𝐵𝐵40) 

lim
Δ𝑡𝑡→0

{ 
 
  
2(2𝜋𝜋)−

1
2(𝜂𝜂 + Δt𝜎𝜎2)

1
2𝜂𝜂−

1
2 [𝐿𝐿𝐿𝐿 (1 + 𝜂𝜂

Δ𝛿𝛿𝜎𝜎2)]
1
2 𝑒𝑒−

{(𝜂𝜂+Δt𝜎𝜎2)
1
2𝜂𝜂−

1
2[𝐿𝐿𝐿𝐿(1+ 𝜂𝜂

Δ𝑡𝑡𝜎𝜎2)]
1
2}
2

  

2

} 
 
  
= 0.    (𝐵𝐵41) 
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𝒩𝒩∫ (𝑔𝑔0)2 𝑑𝑑𝐿𝐿𝑖𝑖
𝑎𝑎Δ𝑡𝑡

−𝑎𝑎Δ
= 𝛿𝛿𝛿𝛿

(2𝜋𝜋)−
1
2(Δ𝛿𝛿)

1
2𝑒𝑒−2(𝜆𝜆Δ𝑡𝑡)

𝜎𝜎5(Δ𝛿𝛿)2
[
 
 
 
 √2𝜋𝜋 erf (𝑎𝑎𝛥𝛥𝑡𝑡√𝑏𝑏√2

)

𝑏𝑏
3
2

− 2𝑎𝑎Δ𝑒𝑒
−(𝑎𝑎Δ)

2𝑏𝑏  
2

𝑏𝑏
]
 
 
 
 
    (𝐵𝐵36) 

where: 

𝑏𝑏 = 𝜎𝜎
4(Δ𝛿𝛿)2
(𝜎𝜎2Δ𝛿𝛿)3 =

𝜎𝜎4(Δ𝛿𝛿)2
𝜎𝜎6(Δ𝛿𝛿)3 =

1
𝜎𝜎2Δ𝛿𝛿                                             (𝐵𝐵37) 

𝑎𝑎Δ = (Δt)
1
2(𝜂𝜂 + Δt𝜎𝜎2)𝜎𝜎𝜂𝜂−

1
2 [𝐿𝐿𝐿𝐿 (1 + 𝜂𝜂

Δ𝛿𝛿𝜎𝜎2)]
1
2                                (𝐵𝐵38) 

Replacing 𝑏𝑏 and 𝑎𝑎Δ in equation (B36) we obtain:  

𝒩𝒩∫ (𝑔𝑔0)2 𝑑𝑑𝐿𝐿𝑖𝑖
𝑎𝑎Δ𝑡𝑡

−𝑎𝑎Δ
 

=  𝛿𝛿𝛿𝛿𝜎𝜎2 𝑒𝑒
−2(𝜆𝜆Δ𝑡𝑡)

{ 
 
  
erf

{ 
 
  (𝜂𝜂 + Δt𝜎𝜎2)

1
2𝜂𝜂−

1
2 [𝐿𝐿𝐿𝐿 (1 + 𝜂𝜂

Δ𝛿𝛿𝜎𝜎2)]
1
2 

√2
} 
 
  

− 2(2𝜋𝜋)−
1
2(𝜂𝜂

+ Δt𝜎𝜎2)
1
2𝜂𝜂−

1
2 [𝐿𝐿𝐿𝐿 (1 + 𝜂𝜂

Δ𝛿𝛿𝜎𝜎2)]
1
2 𝑒𝑒−

{(𝜂𝜂+Δt𝜎𝜎2)
1
2𝜂𝜂−

1
2[𝐿𝐿𝐿𝐿(1+ 𝜂𝜂

Δ𝑡𝑡𝜎𝜎2)]
1
2 }

2

  

2

} 
 
  
  (𝐵𝐵39) 

And taking the limit when Δ𝛿𝛿 → 0 then: 

lim
Δ𝑡𝑡→0

[𝑒𝑒−2(𝜆𝜆𝛥𝛥𝑡𝑡)] = 1,                                                            

lim
Δ𝑡𝑡→0

{ 
 
  
erf

{ 
 
  (𝜂𝜂 + Δt𝜎𝜎2)

1
2𝜂𝜂−

1
2 [𝐿𝐿𝐿𝐿 (1 + 𝐿𝐿

Δ𝛿𝛿𝜎𝜎2)]
1
2

√2
} 
 
  

} 
 
  
= 1,                     (𝐵𝐵40) 

lim
Δ𝑡𝑡→0

{ 
 
  
2(2𝜋𝜋)−

1
2(𝜂𝜂 + Δt𝜎𝜎2)

1
2𝜂𝜂−

1
2 [𝐿𝐿𝐿𝐿 (1 + 𝜂𝜂

Δ𝛿𝛿𝜎𝜎2)]
1
2 𝑒𝑒−

{(𝜂𝜂+Δt𝜎𝜎2)
1
2𝜂𝜂−

1
2[𝐿𝐿𝐿𝐿(1+ 𝜂𝜂

Δ𝑡𝑡𝜎𝜎2)]
1
2}
2

  

2

} 
 
  
= 0.    (𝐵𝐵41) 

 
Therefore,  

lim
Δ𝑡𝑡→0

{𝒩𝒩 ∫ [𝑔𝑔0(𝜇𝜇, 𝜎𝜎, 𝜆𝜆 𝛽𝛽, 𝜂𝜂; 𝐿𝐿𝑖𝑖)]2𝑑𝑑𝐿𝐿𝑖𝑖
𝑎𝑎Δ𝑡𝑡

−𝑎𝑎Δ
} = δ𝑡𝑡

𝜎𝜎2 + 𝑜𝑜(Δ𝑡𝑡).                        (𝐵𝐵42) 

So we finally have: 

lim
Δ𝑡𝑡→0

(𝒩𝒩 ∫ 𝑔𝑔𝑛𝑛𝑔𝑔𝑚𝑚
𝑎𝑎Δ𝑡𝑡

−𝑎𝑎Δ𝑡𝑡
𝑑𝑑𝐿𝐿𝑖𝑖) = δ𝑡𝑡

𝜎𝜎2 + 𝑜𝑜(Δ𝑡𝑡).                                (𝐵𝐵43) 

Following Ait-Sahalia (2004), combining the upper and lower bounds in the limit we 

obtain:  

lim
Δ𝑡𝑡→0

( 𝐼𝐼𝜇𝜇
𝐽𝐽𝐽𝐽) = δ𝑡𝑡

𝜎𝜎2 + 𝑜𝑜(Δ𝑡𝑡) = 𝐼𝐼𝜇𝜇
𝐺𝐺𝐺𝐺𝐺𝐺                                           (𝐵𝐵44) 

 

Or alternatively if we denote as 𝑉𝑉𝑉𝑉𝑟𝑟𝐽𝐽𝐽𝐽(�̂�𝜇) for the variance of �̂�𝜇 in the jump-diffusion 

case, we obtain equation (42) as in proposition 2: 

lim
Δ𝑡𝑡→0

[ 𝑉𝑉𝑉𝑉𝑟𝑟𝐽𝐽𝐽𝐽(�̂�𝜇)] = 𝜎𝜎2

δ𝑡𝑡 + 𝑜𝑜(Δ𝑡𝑡) = 𝑉𝑉𝑉𝑉𝑟𝑟𝐺𝐺𝐺𝐺𝐺𝐺(�̂�𝜇)                                (𝐵𝐵45) 

 


