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Abstract
Simulations and empirical studies suggest that incorporating a discontin-
uous jump process in asset pricing models improve volatility forecasting,
pricing of instruments, and hedging positions in a portfolio. In this paper
we analyze high frequency market data of Colombian sovereign bonds to
study the presence or absence of discontinuities in the price generating pro-
cess. We find that Colombian sovereign debt experiments jumps across all
maturities but with different frequencies, in particular, we do not find that
long term bonds jump less frequently than short term bonds. Furthermore,
bonds with closer maturities cojump in greater magnitude than those with
a greater distance between them. Finally, we find significant day-of-the-
week effects, as well as an important increase in the jump frequency due to
surprises in economic information related to US monetary policy, and no
effect due to direct monetary policy announcements in Colombia.
Keywords: jumps; realized variance; high frequency; preferred habitat
theory; monetary policy announcements.
JEL classification: G12, E43, C58.

Resumen
La incorporación de procesos con saltos en la modelación de precios se ha
demostrado que mejora el pronóstico de volatilidad, la valoración de activos
y las coberturas de un portafolio. El estudio encuentra que en el mercado
local de bonos soberanos de Colombia se observan saltos en la formación de
precios a lo largo de toda la curva, con diferentes intensidades. Contrario
a lo esperado, no se identifica una frecuencia de saltos menor en los bonos
de largo plazo en comparación con los bonos de corto plazo. Además, se
encuentra que los bonos con periodos de maduración similares tienen una
mayor frecuencia de saltos en comparación con aquellos que tienen periodos
al vencimiento más distantes. Esto indica una relación entre la proximidad
en los periodos de maduración y la ocurrencia de saltos en los precios de los
bonos soberanos. En cuanto a las estacionalidades, se encuentran patrones
semanales persistentes en la frecuencia de los saltos. Asimismo, se observan
aumentos significativos en la frecuencia de los saltos asociados a sorpresas
en la información económica que afecta la política monetaria de Estados
Unidos. Sin embargo, no se encuentran efectos similares asociados a anuncios
específicos de política monetaria interna.
Palabras clave: saltos; volatilidad realizada; alta frecuencia; teoría de Ha-
bitat preferido; anuncios de política monetaria.
Clasificación JEL: G12, E43, C58.
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Introduction
The mathematical modeling of financial assets is a key aspect of quan-

titative portfolio management. Stock market participants use it for pric-
ing instruments, hedging positions, and forecasting uncertainty. Pricing
models assume that an asset’s log-price follows a time-continuous diffusion
process, usually a geometric Brownian motion. However, empirical studies
and simulations suggest that incorporating pure jump processes is necessary
for a correct specification of these models Johannes (2004). Additionally,
Johannes (2004) and Andersen et al. (2007) find that explicitly expressing
discontinuities in price models improves volatility forecasting, while Piazzesi
(2005) finds improvements in the pricing of US treasuries when incorporat-
ing the Federal Open Market Committee (FOMC) news announcements as
determinants of potential jump times.

Recent literature extends the notion of price jumps to include cojumps,
i.e., simultaneous jumps present in different assets; these cojump phenom-
ena were first studied in Barndorff-Nielsen and Shephard (2004a). Bollerslev
et al. (2008) find strong evidence for modest-sized but highly significant co-
jumps in a panel of high-frequency stock return data. Additionally, Novotnỳ
and Urga (2017) find common discontinuities in stock prices within a port-
folio. They prove these cojumps can be diversified by means of a correct
combination of assets, though a method to find the combination which elim-
inates these jumps is left as a future endeavor.

Most of the work previously cited is focused on the equity market. Unlike
stocks, fixed-income instruments share many characteristics among them-
selves and are usually only differentiated by maturity and coupon rate.
Dungey et al. (2009) find “significant evidence of jumps and cojumps in the
US term structure” in response to macroeconomic news announcements.
Furthermore, around one-fifth of cojump activity occurs independently of
the news. The authors look at this cojump activity and interpret their find-
ings in light of several theories about the formation and evolution of the
term structure of the yield curve.

To test the presence of jumps, much of the previous literature uses
the statistical test developed by Barndorff-Nielsen and Shephard (2004b)
in which two measures of realized volatility are compared and contrasted:
realized variance (RV) and bi-power variation (BV). By taking the differ-
ence between the former and the latter, we can obtain a notion of the size
of a potential discontinuity (see Barndorff-Nielsen and Shephard (2004b),
Andersen et al. (2003a), Huang and Tauchen (2005)). Intuitively, jumps
are interpreted as the discrepancy between these two measures of realized
volatility.

In this paper, we test for the presence of jumps using high-frequency
Colombian sovereign bond data. Second, jump behavior is described and
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characterized by analyzing the frequency and magnitude of its activity.
Third, following the procedure presented in Dungey et al. (2009), cojumps
across various assets are compared in the context of the two main theories of
term structure formation: liquidity preference theory of the term structure
and the market segmentation/preferred habitat model. Finally, we look at
whether there are day-of-the-week effects or the relationship between jump
frequency and economic announcements and surprises.

Results indicate that bonds distributed throughout the Colombian yield
curve commonly experience jumps independently of maturity, this is differ-
ent from what is found in US data where long-term bonds show less jump
activity than short-term bonds Dungey et al. (2009). Furthermore, our re-
sults indicate that an average of 46.989% of jumps occur simultaneously
across two assets. Most commonly, the bonds in the shorter end of the term
structure jump simultaneously, though illiquidity hinder a robust analysis
of assets on the long end of the yield curve as is the case for the US Goyenko
et al. (2011). Daily seasonalities are found in both univariate and multivari-
ate jump activity, with both types of jumps being least likely to occur on
Monday. Depending on the sampling frequency, cojumps are most likely to
occur on Wednesdays or Thursdays. Furthermore, a panel logit model finds
a persistent Thursday effect of an increase of 7% in the frequency of jumps
for almost all sampling frequencies. In addition, we find that investors in
the Colombian sovereign bond market are more sensitive to external sur-
prises that may impact a change in US monetary policy than local changes
in monetary policy or any other economic announcements. In particular,
during 2017-2018, unexpected changes in CPI inflation in the US created a
37% increase in the probability of observing a jump, using 5-minute data.

This paper contributes to understanding the dynamics of bond markets
in emerging economies. Also, it provides empirical evidence regarding con-
flicting theories on the terms structure of interest rates (liquidity preference
vs preferred habitat hypothesis). In particular, measuring the importance
of co-jumps across different segments of the yield curve provides evidence
regarding the behavior of investors along the curve.

The rest of the document is organized as follows. Section 1 discusses
how different theories regarding the term structure of interest rate can lead
to different hypotheses regarding the timing frequency of jumps in differ-
ent maturities along the yield curve. Section 2 presents the methodologies
used to quantify and test for jumps using high-frequency transaction data.
Section 3 contains an overview of the bond transaction database and con-
siderations about sampling frequencies and methods. Section 4 presents an
in-depth showcasing of results and the corresponding discussion. Finally,
section 5 concludes.
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1. Investor Preference and the Yield Curve
Measuring jumps on bonds has to consider the term structure of interest

rates. Whereas jumps in specific stocks can be analyzed in isolation, jumps
in bonds must consider the relationships among the different maturities.
Term structure models are based on the idea that there exists a lower-
dimensional set of variables (factors) that capture most of the movements
across the different maturities. Therefore, it is important to consider how
much of this co-movement is related to the discontinuity component of the
data-generating process. Although this is beyond the scope of the paper,
we empirically test for the relationship among jumps in different maturities.

The theories of liquidity preference and preferred habitat/market seg-
mentation are two theories about how the term structure of the yield curve
forms and evolves over time. Liquidity preference argues that yields of
longer-dated bonds are higher due to a liquidity risk premium. This liq-
uidity risk premium arises from the greater possibility of capital loss in
long-term bonds compared to shorter-term debt. Consequently, a greater
risk of loss would imply that long-dated bonds are more reactive to macroe-
conomic news announcements and external shocks than short bonds. Thus,
according to liquidity preference theory, in any country, we would expect to
find greater jump activity in bonds of longer maturities.

On the other hand, the preferred habitat hypothesis argues that individ-
ual investors operate in different segments of the term structure according
to their particular interests. Thus, movements in the yield curve respond
to the supply and demand pressures of investors who populate different
market sections. For example, speculators who want to maximize profits
may be more interested in trading short-maturity bonds due to their liquid-
ity. In contrast, pension funds or insurance companies may choose to trade
long-term bonds to fund future liabilities. Originally, this model assumed a
rigid segmentation of markets. Modigliani and Sutch (1966) argue against
this premise, proposing that investors may operate outside their preferred
segments if a risk premium compensates their aversion to reinvestment risk.

In this context, since prices respond to the local behavior of different
investors, the short, medium, and long-term yields would be independent
of one another. Thus, it is reasonable to expect that if speculators and
arbitrageurs tend to operate in the short end of the term structure, news
and announcements may cause a greater impact on short yields. At the same
time, long bonds would be reactive to news relevant to the long-term state
of the economy. This qualitative overview of two theories of term structure
behavior will give us the guiding principles in our analysis of jump behavior.
In addition, under the preferred habitat hypothesis, we expect bonds with
similar maturities to "jump together" more frequently than bonds that are
further apart. We explore this specific hypothesis in section 4.3.
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2. Measuring and Testing for Jumps
Continuous time diffusion models are a vital tool in modeling the price

evolution of financial instruments. Their analytic convenience makes them
an extremely useful tool for drawing interpretations and simplifying hedging
calculations based on modern financial derivatives. These models commonly
assume that the change of an asset’s log-price pt follows the stochastic dif-
ferential equation:

dpt = µtdt + σtdWt (1)
where µt is the instantaneous drift given by a locally bounded variation

process and σt is a strictly positive volatility process with well-defined limits.
Wt is a Brownian motion. Under the premise of equation (1) the j-th
intraday log-return is defined as rt,j = pt,j−pt,j−1. The associated quadratic
variation of this model is given by:

⟨r, r⟩t =
∫ t

0
σ2

sds (2)

In what follows, we assume that the data-generating process for a bond’s
log price is given by:

dpt = µtdt + σtdWt + dLJ(t) (3)

The new third term is a pure jump Levy process, where LJ(t)−LJ(s) =∑
s≤τ≤t κ(τ) is the jump size. We assume this is a case of the Levy process,

known as a Poisson compound process. In other words, the number of jumps
Nt follow a Poisson distribution. We also assume a constant jump intensity
λ related to the frequency of the jumps and jump size κ(τ) as an identically
distributed (i.i.d.) random variable related to the magnitude of the jump.
Now, the quadratic variation for this model is:

⟨r, r⟩t =
∫ t

0
σ2

sds +
Nt∑

j=1
κ2

t,j (4)

In the more general process, expression (3), the quadratic variation in-
cludes the jump size.
Asymptotically realized variance (RV) could give us a good approximation
of the quadratic variation:

Definition 1 Realized variance:

RVt =
M∑

j=1
r2

t,j

,

6



O D E O N  N . º  2 4
125

odeon, issn: 1794-1113, e-issn: 2346-2140, N.° 24, enero-junio de 2023, pp. 119-147

where M denotes the number of intraday returns that are used to mea-
sure the realized volatility of day t. This means that, for our jump-diffusion
model, the realized variance converges to expression (4) in the limit:

lim
M→∞

RVt =
∫ t

t−1
σ2

sds +
Nt∑

j=1
κ2

t,j (5)

Equation (5) gives us an estimate of daily volatility which captures the
effect of the volatility process σt as well as the magnitude of variance at-
tributed to discontinuous jumps, given by

∑Nt

j=1 κ2
t,j . Barndorff-Nielsen and

Shephard (2004a), as well as their following extensions in Barndorff-Nielsen
and Shephard (2005a) and Barndorff-Nielsen and Shephard (2005b) suggest
that, under reasonable assumptions, bi-power variation enables a consistent
estimator of quadratic variation that is robust to jumps:

Definition 2 Bi-power variation:

BVt = µ−2
1

M

M − 1

M∑
j=2

|rt,j ||rt,j−1|

This definition of bipower variation (BV) is multiplied by a coefficient
of standardization µk, which allows for a direct comparison with RV. This
coefficient is given by µk ≡ 2k/2Γ [(k + 1)/2] /Γ (1/2) for k > 0. Asymptot-
ically, we have:

lim
M→∞

BVt =
∫ t

t−1
σ2

sds (6)

We can use the fact that BV is robust to jumps, while RV is not, to
obtain a notion of the size of a jump. By taking the difference between (5)
and (6), asymptotically, we get:

RVt − BVt →
∑

t−1≤τ≤t

κ2
τ (7)

Equation (7) implies that we can obtain a consistent estimate for the
size of daily jumps. Despite this, for finite samples, the difference between
RV and BV is not guaranteed to be positive. We can truncate its value at
zero and consider only positive values.

Instead of analyzing the magnitude of jumps, studying the relative con-
tribution of jumps to price variance is more interesting. Thus, an initial
expression of the jump statistic (JS) in Barndorff-Nielsen and Shephard
(2004a) is given by:

JSt = RVt − BVt√(
µ−4

1 + 2µ−2
1 − 5

) ∫ t

t−1 σ4
sds

→ N (0, 1)
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Where the original difference in volatilities is now divided by a coefficient
that standardizes the statistical distribution. This coefficient introduces
the term

∫ t

t−1 σ4
sds, which determines the scale of equation (7) in units of

conditional standard deviation (see Huang and Tauchen (2005)). A jump-
robust estimate of this term is given by tri power quarticity (TQ):

Definition 3 Tripower quarticity

TQt = Mµ−3
4/3

(
M

M − 2

) M∑
j=3

|rt,j−2|4/3|rt,j−1|4/3|rt,j |4/3 →
∫ t

t−1
σ4

sds

TQ is accompanied by the scale normalizing constant M since each
absolute return is of the order

√
∆t. Since M is of order 1

∆t , the whole
expression approaches to one well-defined limit.

Even so, Huang and Tauchen (2005) find that simply using TQ tends
to over-reject the null hypothesis of no jump. Instead, they propose the
following modification:

JSt = RVt − BVt√(
µ−4

1 + 2µ−2
1 − 5

)
max (BV 2

t , TQt)
(8)

Several authors (Barndorff-Nielsen and Shephard (2005a), Andersen et al.
(2001), Andersen et al. (2003b)) argue that finite sample performance may
be improved by basing the jump test on the log-difference of the realized
measures, i.e.:

JSt = log(RVt) − log(BVt)√(
µ−4

1 + 2µ−2
1 − 5

)
max (BV 2

t , TQt)
(9)

This implies that the numerators of equations (8) and (9) have the same
asymptotic distribution. According to Huang and Tauchen (2005) this is
due to the fact that the first-order Taylor expansion term of both numera-
tors, centered around the asymptotic mean of BV (i.e.

∫ t

t−1 σ2
sds), have the

same distribution. Then, the difference of both realized (and log-realized)
measures generate the same asymptotic distribution. Thus, equation (9) is
the expression used to test the presence of jumps in our empirical applica-
tion.

3. Data
Our database consists of intraday transactions on the Mercado Elec-

trónico Colombiano (MEC) operated by Bolsa de Valores de Colombia
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(BVC). The dataset includes price information from January 2, 2017 to De-
cember 28, 2018. This includes operations for a total of 485 trading days.
Colombian sovereign debt is issued in Colombian peso (COP) and Unidad
de Valor Real (UVR)1. Despite having data for both types of assets, only
COP issuances are considered since they are more liquid.

Mnemonic conventions for Colombian debt titles enconde information
about the bond’s coupon, year of issuance, and maturity. For example,
TFIT16240724 is a fixed coupon treasury (TFIT) issued in 2016 (TFIT16)
with an expiration date on July 24, 2024 (TFIT16240724). For the sake of
brevity we will denote bonds only by their expiration year in our discussions,
i.e., we will refer to TFIT16240724 as T24.

3.1. Bond Selection Criteria
Bonds were selected for analysis according to the following criteria: i)

Liquidity: Since the jump detection approach detailed in the theoretical
framework is based on the asymptotic distributions of realized measures of
variance, the most active assets will return the best results; ii) Maturity:
The two theories discussed in section 1 provide some hypothesis on the
jump behavior for bonds of different maturities. Thus, choosing bonds with
maturities distributed along the term structure allows for an interesting
comparison of jump behavior in light of those hypotheses.

For Colombia’s sovereign bonds, these two criteria present a serious chal-
lenge. The local market has few agents trading day to day, which means
liquidity is generally low. Additionally, most of these agents trade mainly
short and medium-term bonds. This means long-term debt is much more
illiquid since market participants buy or sell long-term bonds mostly to
comply with regulations and to match long-term liabilities. Consequently,
an analysis at the shorter end (less than 5 years) of the term structure will
be much richer in comparison to the longer end (more than 10 years).

Table 1 displays daily descriptive statistics for all bond transactions.
Maturity, total trading days, and average and median transactions are pre-
sented, as well as average and median Inter-Arrival Times (IAT). IAT is
defined as the time interval between transactions, thus, IAT is lower for
more liquid assets and greater for illiquid ones. Values reported in this
table help us quantify the daily liquidity of each title. For example, the
T24 bond has on average 189.971 transactions per day. Furthermore, IATs
suggest that each transaction occurs every 89 seconds on average.

This means that this bond is much more liquid than the T20 bond,
which trades around 24 times each day, with each transaction occurring

1UVR represents the purchasing power of the Colombian peso and is defined as the
price of a predetermined basket of goods and services.

9



128

odeon, issn: 1794-1113, e-issn: 2346-2140, N.° 24, enero-junio de 2023, pp. 119-147

every 7 minutes and 18 seconds on average. The bonds chosen for anal-
ysis are: TFIT06211118, TFIT06110919, TFIT15240720, TFIT-10040522,
TFIT16240724 and TFIT16300632, hereafter T18, T19, T20, T22, T24,
T32. In other words, if we take 2017 as a base year we are considering
bonds with 1,2,3,5,7 and 15 years to maturity. Even though these bonds
are the most traded, illiquidity remains a real challenge. Only T18, T20
and T24 have on average more than 10 transactions per day, while the only
long-term bond (T32) has on average 4.25 transactions per day.

Table 1: Descriptive statistics of daily transactions throughout our sample;
e.g., T24 averages 189,971 daily transactions in our database, with each
trade happening almost every minute and a half on average. Maturities are
in reference to 2017

Maturity Trading days Avg. trans. Median trans. Average IAT Median IAT
TFIT16240724 7 485 189,971 198 1m 29,047s 13s
TFIT15240720 3 472 23,961 18 7m 18,138s 1m 16s
TFIT06211118 1 435 15,573 11 8m 32,520s 1m 40.5s
TFIT10040522 5 455 6,771 5 18m 42,474s 5m 56s
TFIT06110919 2 394 5,233 4 18m 54,712s 4m 16s
TFIT16300632 15 352 4,258 2 20m 04,405s 5m 35s
TFIT15260826 9 315 3,404 1 19m 42,871s 6m 35s
TFIT08261125 8 133 0,891 0 27m 06,659s 9m 30s
TFIT16180930 13 92 0,625 0 24m 55,545s 7m 36s
TFIT11241018 1 105 0,559 0 27m 40,795s 10m 25,5s
TFIT16280428 11 75 0,285 0 28m 51,778s 8m 00s

Source: Author’s calculations.

3.2. Data Sampling and Microstructure Noise
To apply the jump test in equation (9), our trade data must be sam-

pled at equal discrete time intervals Dungey et al. (2009). Sampling high-
frequency data entails the following trade-off: c hoosing a  h igh sampling 
frequency captures more information about the evolution of the real-time 
price formation process at the cost of greater microstructure noise. On the 
other hand, a lower sampling frequency minimizes noise, at the expense of 
masking information about the asset’s instantaneous market price.

Even though optimal sampling frequency tests exist, their results dif-
fer for different bond maturities (Zhang et al., 2005; Bandi and Russell, 
2006). Different sampling frequencies for different bonds make compar-
isons across different assets impossible. For this reason, instead of using 
optimal frequency tests, the empirical literature cited so far applies several 
sampling frequencies for assets under consideration to compare and contrast 
the effects of sampling frequency on the jump test. We will replicate this 
procedure, sampling at 5, 10, 15, and 30 minutes intervals.
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The optimal sampling method is also a source of debate among aca-
demics. Dungey et al. (2009) take the last price within a time interval as
representative of the market price within that interval. Sheppard (2006)
argues that this approach may lead to scrambling problems2 and could also
skew the covariance of returns to zero for larger sampling frequencies.

On the other hand, Lee and Mykland (2012) propose a non-parametric
approach which assumes that market noise has a zero-mean distribution.
This way, taking local averages of prices within time intervals asymptotically
removes noise from the underlying market price. Even though the authors
assume that data is of ultra high frequency, we will adopt this method as
our sampling procedure since scrambling problems are of greater magnitude
for the more illiquid assets we are studying.

3.3. Additional Statistics
This section presents additional information about daily bond transac-

tions. Tables 2 and 3 present the same statistics as table 1 for each year in
our sample. As previously mentioned, IAT for more liquid assets are smaller
than for illiquid assets since the time between transactions is shorter, thus,
their values would cluster near zero in the distribution. We have decided
to crop IAT values at 3600 seconds since intervals larger than an hour are
uncommon.

Figures 1 through 6 showcase the number of transactions of the selected
bonds during all trading days of 2017-2018. Additionally, IAT distributions
for the selected bonds are included. This information on the trading activ-
ity in the bond market also shows the impact on expected changes on the
incentives on market makers in the bond market. At the end of 2018, the
treasury reduced the financial incentives for financial institutions participat-
ing in the primary bond market3. The incentive system in the Colombian
bond market was established in the late nineties to foster the development
of the bond market. However, recent studies indicated that the level of
incentives was not necessary and created unnecessary trading activity from
financial institutions in the secondary market in order to obtain the incen-
tives in the primary market4. In particular, in Figure 5 we observe a large
drop in the number of transactions at the end of 2018 for the most actively
traded bond, T24.

2Taking the last price in each time interval could result in intervals of uneven length.
Since we need equal length intervals, this problem is known as scrambling.

3In Colombia, Ministerio de Hacienda y Crédito Público is the institution in charge
of issuing sovereign bonds.

4Here is a recent post (in spanish) that describes the regulatory changes.
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Table 2: Descriptive statistics of daily transactions during 2017
Maturity Trading days Avg. trans. Median trans. Average IAT Median IAT

TFIT16240724 7 242 233,636 226 1m 15,378s 12s
TFIT15240720 3 229 10,463 8 14m 47,167s 4m 17s
TFIT06211118 1 242 25,727 24 7m 9,708s 1m 24s
TFIT10040522 5 220 5,095 4 22m 4,609s 7m 39s
TFIT16300632 15 142 2,244 1 26m 43,930s 9m 17s
TFIT06110919 2 214 6,711 5,5 19m 19,944s 5m 51,5s
TFIT15260826 9 196 5,500 2 17m 23,907s 5m 33s
TFIT08261125 8 0 0 0 — —
TFIT16180930 13 78 1,178 0 24m 21,121s 7m 8s
TFIT11241018 1 96 1,062 0 27m 38,963s 10m 27s
TFIT16280428 11 20 0.165 0 19m 9,950s 1m 23,5s

Source: Author’s calculations.

Table 3: Descriptive statistics of daily transactions during 2018
Maturity Trading days Avg. trans. Median trans. Average IAT Median IAT

TFIT16240724 6 243 146,486 137 1m 50,813s 14s
TFIT15240720 2 243 37,403 34 5m 21,236s 58s
TFIT06211118 – 193 5,461 4 15m 49,509s 4m 44,5s
TFIT10040522 4 235 8,440 7 16m 49,719s 5m 7s
TFIT16300632 14 210 6,263 4 18m 2,294s 5m 16.5s
TFIT06110919 1 180 3,761 2 19m 32,676s 5m 34,5s
TFIT15260826 8 119 1,317 0 32m 47,567s 16m 57s
TFIT08261125 7 133 1,778 1 27m 6,659s 9m 30s
TFIT16180930 12 14 0,074 0 54m 37s 45m 56,5s
TFIT11241018 – 9 0,058 0 28m 39,800s 3m 42s
TFIT16280428 10 55 0.403 0 33m 22,395s 12m 16s

Source: Author’s calculations.

Figure 1: TFIT06211118: a) Daily transactions for 2017-2018; b) IAT distribu-
tion cropped at 3600 seconds
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Source: Author’s calculations.
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Figure 2: TFIT06110919: a) Daily transactions for 2017-2018; b) IAT distribu-
tion cropped at 3600 seconds
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Source: Author’s calculations.

Figure 3: TFIT15240720: a) Daily transactions for 2017-2018; b) IAT distribu-
tion cropped at 3600 seconds
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Source: Author’s calculations.

4. Empirical Results
4.1. Univariate Jumps

Table 4 summarizes the results of applying equation (9) for 5, 10, 15, and
30 minutes sampling frequencies at a 5% significance level. Despite trading
for 472 out of the 485 total days, the T20 bond exhibits the most active
jump behavior at all frequencies except for 30 minutes, jumping 68.4% of
the time at a 5-minute frequency and 55.2% on average. On the other
hand, the T24 and T32 bills are among the least likely to jump. T24 jumps
55.7% of the time at the 5-minute sampling frequency, but this rejection
rate quickly drops below 30% for all other frequencies. Meanwhile, the T32
rejection frequency increases for lower sampling frequencies.
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Figure 4: TFIT10040522: a) Daily transactions for 2017-2018; b) IAT distribu-
tion cropped at 3600 seconds
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Source: Author’s calculations.

Figure 5: TFIT16240724: a) Daily transactions for 2017-2018; b) IAT distribu-
tion cropped at 3600 seconds
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Source: Author’s calculations.

This trend of lower sampling frequency resulting in higher rejection rates
is unexpected since the presence of noise in higher sampling frequencies
should generate more rejections of the test statistic. Out of the six bonds
studied, this inverse relationship between frequency and rejection is present
in the more illiquid assets: T19, T22, and T32. Table 4 reveals that these
assets increase the number of detected jump days when the sampling fre-
quency decreases. This may indicate that the lower sampling frequency
captures more information about transaction dynamics in illiquid assets.
Thus, when the average of the time interval is taken, the longer time inter-
vals allow for a more representative average price.

In contrast, bonds characterized by higher liquidity demonstrate an up-
ward trend in rejection rates as the sampling frequency increases. For in-
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Figure 6: TFIT16300632: a) Daily transactions for 2017-2018; b) IAT distribu-
tion cropped at 3600 seconds
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Table 4: Rejection frequency of the jump test for all sampling frequencies
Avg. trans. Rejection freq. No. of jump days Rejection freq. No. of jump days

5 minutes 10 minutes
TFIT06211118 15,573 0,623 271 0,568 247
TFIT06110919 5,233 0,340 134 0,365 144
TFIT15240720 23,961 0,684 323 0,606 286
TFIT10040522 6,771 0,352 160 0,418 190
TFIT16240724 189,971 0,557 270 0,272 132
TFIT16300632 4,258 0,276 97 0,304 107

15 minutes 30 minutes
TFIT06211118 15,573 0,494 215 0,386 168
TFIT06110919 5,233 0,411 162 0,398 157
TFIT15240720 23,961 0,547 258 0,369 174
TFIT10040522 6,771 0,411 187 0,426 194
TFIT16240724 189,971 0,245 119 0,140 68
TFIT16300632 4,258 0,307 108 0,318 112

Source: Author’s calculations.

stance, the rejection rate for T24 escalates from 0.14 to 0.245, 0.272, and
0.557 as the sampling frequency decreases from 30, 15, 10 to 5 minutes,
respectively. This observation aligns with the notion that higher sampling
frequencies tend to introduce greater noise, which is consistent with the
findings reported by Dungey et al. (2009) for the United States. However,
our research in the context of Colombia diverges from their conclusions as
we discover that jumps are less prevalent in longer-term bonds when com-
pared to short-term bonds. We do not identify any discernible relationship
between bond maturity and the frequency of univariate jump rejections.

Graphical representations of jump test results for the 30-minutes sam-
pling frequency are shown in figure 7. This plot shows the value of the

15



134

ODEON, ISSN: 1794-1113, E-ISSN: 2346-2140, N.° 24, enero-junio de 2023, pp. 119-147

jump statistic for each day in proportion to its critical value. It is clear
by the observation that jumps are a common occurrence for fixed-income
instruments, which suggests that simultaneous jumps across different assets
are a real possibility. We study the cojumping behavior in detail in the
next section. Univariate test results for different sampling frequencies are
included in section 6.

Figure 7: Time series of jump test results in proportion to the critical value
at 30 minute sampling frequency and at a 95% confidence interval.
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4.2. Multivariate Jumps
As a complement to the univariate jump test, we can also consider the

case of multiple bonds of different maturities jumping on a given day. This
cojump behavior can be gauged by studying coexceedances, an approach
developed by Bae et al. (2003) in the context of financial contagion and the
occurrence of extreme events. A coexeedance occurs when, on a particular
day, a bond of maturity i exceeds the jump statistic’s critical value given
that a bond of maturity j has also surpassed the critical value for the same
day. This would imply that the assets have jumped synchronically at the
daily level.
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Table 5: Number of coexceedances for each bond at all sampling frequencies
Co-exceedances Total jumps Mnemonic Co-exceedances Total jumps
0 1 2 3 0 1 2 3

5 minute sampling 10 minute sampling
TFIT06211118 47 132 76 16 271 TFIT06211118 69 120 51 7 247
TFIT15240720 39 166 102 16 323 TFIT15240720 78 141 60 7 286
TFIT16240724 27 129 98 16 270 TFIT16240724 22 66 37 7 132
TFIT16300632 4 29 48 16 97 TFIT16300632 12 47 41 7 108

15 minute sampling 30 minute sampling
TFIT06211118 66 104 40 5 215 TFIT06211118 76 70 20 2 168
TFIT15240720 91 123 39 5 258 TFIT15240720 74 75 23 2 174
TFIT16240724 27 54 33 5 119 TFIT16240724 15 36 15 2 68
TFIT16300632 23 51 29 5 108 TFIT16300632 43 47 20 2 112

Source: Author’s calculations.

More formally, the procedure is as follows. We begin by looking at the
individual time series of JSi,t values for each bond. A dummy variable di,t

indicates if a bond of maturity i exceeds the statistic’s critical value at day
t:

di,t =
{

1 JSi,t > JScritical

0 otherwise

With the series of dummy values for each bond, the number of coexceedances
will be given by the sum of all di,t for i ̸= j given that j = 1:

Ej,t|dj,t=1 =
n∑

i=1, i ̸=j

di,t (10)

We have decided to limit the cojump analysis to the T18, T20, T24,
and T32 emissions, since the first three are the most liquid and T32 is
the longest-dated bond in our database. This means that the number of
coexceedances will range in values from 0 to 3, where 0 indicates the number
of unique jumps and 3 is the number of times when all bonds jump in a
given day.

Table 5 presents the coexceedance results for all sampling frequencies
and the total number of jumps. Interestingly, jumps of two assets (i.e. co-
exceedance iquals 1) are the most common event, followed by unique jumps
(i.e. coexceedance iquals 0). The least common occurrence is the simul-
taneous jump of all four bonds. Furthermore, these results persist across
all maturities and sampling frequencies, which may point to an underlying
dynamic that causes this behavior in the Colombian bond market.

Averaging the 2 asset cojump proportions across bonds and maturities
(except for T32 at 5 minutes) accounts for 46.989% of all jump activity. This
implies that when the term structure experiences a jump, it generally does
so in tandem with another part of the curve. Identifying exactly which pair
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of bonds cojump, will be analyzed in detail in section 4.3; for the moment,
we observe that T18 and T20 experience many more 2-asset cojumps at all
frequencies.

4.3. Cojump Pairs
By limiting our view to coexceedances of only two assets, we can see

how their cojump behaviour evolves over time. We make this by defining a
counter which keeps track of every time a coexceedance occurs for a pair of
bonds. Everytime Ej,t|dj,t=1 = 1, the counter goes up by 1. When graph-
ing this counter’s values as a time series, this procedure has a convenient
interpretation since the steepest curve indicates the most active pairing of
cojumping bonds. Figure 8 shows the evolution of the cojump pairs for
all sampling frequencies considered: T18-T20 as a green dashed and dotted
line; T18-T24 as a solid orange line; and T20-T24 as a dashed blue line. Fig-
ure 9 graphs the same dynamic for the T24-T32 (dash and dot), T20-T32
(solid), and T18-T32 (dashed) pairs.

Figure 8: Time evolution of cojump pair activity at a) 5 minute sampling;
b) 10 minute sampling; c) 15 minute sampling; d) 30 minute sampling fre-
quency for pairs of 2Y, 4Y, and 6Y difference in maturity
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Source: Author’s calculations.

Our interest lies in comparing cojump behaviour of bonds distributed
throughout the term structure. Thus, the following analysis is made clearer
by referring to these pairs by the difference of their constituent’s bond ma-
turities. From smallest to largest difference, the pairs will be: T18-T20:
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2Y pair; T20-T24: 4Y pair; T18-T24: 6Y pair. The second set would be
T24-T32: 8Y pair; T20-T32: 12Y pair; T18-T32: 14Y pair.

The results at 5 minute sampling tend to align with the preferred habitat
theory, since the two pairs of closest maturities, 4Y and 2Y, show the most
(and second most) cojump activity. 4Y jumps 185 times, 2Y does so 161
times, while 6Y counts 129 coexceedances in our sample. Comparisons
with the 10, 15 and 30 minute samplings show that 2Y is consistently the
most active pair, with 4Y and 6Y being second and third. These results
strengthen the case for cojump behavior following the market segmentation
hypothesis, which foresees bonds of nearer maturities reacting similarly to
external shocks. Yet, for sampling frequencies of 10, 15, and 30 minutes,
the 4Y and 6Y pairs tend to move more in tandem with each other. This
low cojump number is explained by the low univariate activity of the T24
bond at those frequencies, since T24 only jumps on 132, 119, and 68 days
respectively (see table 4). Thus, pairs which contain T24 will have fewer
days on which a possible coexceedance may occur.

Figure 9: Time evolution of cojump pair activity at a) 5 minute sampling;
b) 10 minute sampling; c) 15 minute sampling; d) 30 minute sampling fre-
quency for pairs of 8Y, 12Y, and 14Y difference in maturity
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Meanwhile, casual observation of figure 9 tells us that pairs of dissimilar
maturities are much less active than those with similar maturities. Across all
samplings, 12Y shows the most coexceedances, followed by 14Y (except at
5 minutes) and 8Y. Thus, we find no constructive evidence for either theory
of the term structure of interest rates. Yet, we may replicate the argument
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Table 6: This table shows the daily distribution of jump test results which
exceeded the critical value at 5% significance for all sampling frequencies

Weekdays Weekdays
M T W Th F M T W Th F

5 minute sampling 10 minute sampling
TFIT06211118 0,193 0,226 0,181 0,189 0,211 TFIT06211118 0,235 0,189 0,205 0,182 0,189
TFIT06110919 0,155 0,238 0,195 0,214 0,198 TFIT06110919 0,140 0,241 0,185 0,227 0,206
TFIT15240720 0,148 0,214 0,218 0,196 0,225 TFIT15240720 0,145 0,178 0,255 0,206 0,215
TFIT10040522 0,106 0,206 0,275 0,250 0,163 TFIT10040522 0,116 0,221 0,221 0,237 0,205
TFIT16240724 0,104 0,201 0,179 0,276 0,239 TFIT16240724 0,104 0,201 0,215 0,250 0,229
TFIT16300632 0,072 0,237 0,278 0,227 0,186 TFIT16300632 0,112 0,178 0,243 0,215 0,252
Daily avg, 0,130 0,220 0,221 0,225 0,204 Daily avg, 0,142 0,201 0,221 0,220 0,216
Coexceedance 0,168 0,211 0,211 0,205 0,205 Coexceedance 0,160 0,208 0,219 0,205 0,208

15 minute sampling 30 minute sampling
TFIT06211118 0,210 0,210 0,185 0,193 0,202 TFIT06211118 0,221 0,132 0,250 0,235 0,162
TFIT06110919 0,147 0,225 0,236 0,209 0,182 TFIT06110919 0,195 0,155 0,224 0,207 0,218
TFIT15240720 0,135 0,172 0,233 0,233 0,228 TFIT15240720 0,155 0,208 0,214 0,196 0,226
TFIT10040522 0,128 0,230 0,182 0,262 0,198 TFIT10040522 0,134 0,222 0,232 0,227 0,186
TFIT16240724 0,142 0,216 0,204 0,222 0,216 TFIT16240724 0,102 0,242 0,210 0,236 0,210
TFIT16300632 0,111 0,222 0,241 0,231 0,194 TFIT16300632 0,134 0,214 0,214 0,232 0,205
Daily avg, 0,146 0,213 0,214 0,225 0,203 Daily avg, 0,157 0,196 0,224 0,222 0,201
Coexceedance 0,151 0,202 0,221 0,214 0,212 Coexceedance 0,157 0,197 0,217 0,206 0,223

Source: Author’s calculations.

that low univariate jump activity is responsible for the low cojump count
for these pairs. In this case, the low activity of T32 constrains the number
of days for a coexceedance to occur. Since T20 is the most active bond, it
has the most chance of cojumping with the T32 bond. By the same logic,
T24 is the least active bond, making the T24-T32 pair the least likely to
cojump. Our results for sampling frequencies other than 5 minutes reflect
that this is indeed the case.

4.4. Stylized Facts of the Colombian Bond Market
This section studies daily jump seasonalities: the daily distribution of the

jump test results is studied in subsection 4.4.1. This allows us to more for-
mally define a panel logistic regression model for a binary outcome of jump
versus no jump. This approach lets us include central bank announcements.
These results are presented in subsection 4.5.

4.4.1. Daily Distribution of Jumps

It is possible that both univariate and multivariate jumps exhibit daily
seasonalities. For example, Das (2002) explicitly models day-of-the-week
effects on jump behaviour and finds that jumps are more likely to jump on
Wednesdays due to option expiry effects. Even though the procedure we
have followed does not capture daily effects, we can observe the distribution
of jumps and cojumps to check for daily patterns. Results of this analysis
are presented in table 6.
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For all sampling frequencies and almost all bonds, the least likely day
for a jump to occur is Monday. Only T18, and T19 at 30 minute sampling,
deviated from this behaviour. On the other hand, for all other weekdays,
the assets studied did not reflect any particular seasonality that allow us
to identify a most common jump day. For example, Wednesday, with 10
and 30 minute sampling frequencies, has on average 22.1% and 22.4% of
jumps happening on this day of the week. At 5 and 15 minute sampling
frequencies, Thursday has on average 22.5% of jumps occurring that day
for both frequencies.

The results for cojumps exhibit some similarity to univariate jumps. An-
alyzing only jumps of more than one asset (coexceedance > 0) no particular
day at any sampling frequency stands out as one where a cojump is most
likely to happen. As was the case for univariate jumps, the least likely day
for cojumps is once again Monday. The apparent Monday effect found in
idiosyncratic jumps and cojumps contradicts the findings for US treasuries
presented by Dungey et al. (2009), where the authors do not find any evi-
dence of daily seasonalities for neither jumps nor cojumps. Day of the week
effects are studied more formally in the next subsection, as well as the effect
of economic announcements on jump activity.

4.5. Economic Announcements and Jump Activity
In this section, we are interested in estimating the impact of different

economic announcements on jump activity. To do this, we define a panel
logistic model which specifies the event of a jump occurring as a function of
weekdays and economic announcements. The model is specified as follows:

I(J∗
i,t ≥ 1) = β0 +

4∑
j=1

βkDk + αDAnnouncement + εi,t (11)

where J∗
i,t is the result of the jump test applied to bond i at day t

in proportion to the critical value. The identity function transforms the
continuous values of the jump test into a binary outcome model which takes
a value of 1 when the critical value is exceeded and zero otherwise. The Dk

terms control for a day of the week, from Tuesday through Friday. We
expect the βk coefficients to be positive since we found that Monday is the
least likely day for a jump to occur. We estimate a random effects model,

εi,t = τi + ei,t

Where, ei,t ∼ iidN (0, σ2
e) and τi ∼ iidN (0, σ2

τ ), captures the unobserved
heterogeneity across the propensity of different maturities to jump.

We consider different types of announcements and sources. First, we
consider announcement as an indicator variable (i.e, DAnnouncement takes a
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value of 1 and 0 otherwise) on days that denote the date of news releases or
the day after if the release is after the market closes. The announcements
macroeconomic information from Colombia and the US Monetary policy
(interest rate announcements and FOMC meetings), CPI, Unemployment
rate, Underemployment rate, GDP, Consumer confidence, trade balances,
durable goods, and rating changes on Colombian sovereign debt. Second,
we also consider a different indicator variable that takes a value of 1 if
the released indicator deviates from the expected value (from a survey of
forecasters). This second definition provides a way to control the content of
the announcement and whether the surprise contained in the information is
related to the jump rather than just the type of information that is being
released to the public.5

Table 7 presents logistic regression results and the average marginal
effects for the most relevant variables in terms of statistical significance.
Several day-of-the-week effects are found for 5, 10, and 15-minute samplings.
We report positive Tuesday and Thursday effects, the former is especially
important because it is consistently significant. At these frequencies, jumps
are about 7.6% more likely to occur on Tuesdays and about 6% more likely
to occur on Thursdays. The Thursday effect is robust to the introduction
of different types of economic announcements. This result deviates from
what is observed in Table 6 where we find a relatively similar distribution
of jumps along weekdays, with a lower amount on Mondays.

With respect to economic announcements and surprises we have mixed
results. Overall, we find that very few variables have an impact on the jump
frequency, for example, at the 15 minute sampling frequency we do not find
any significant effects. In particular, among the different sampling times
we do not find common variables that increase the jump frequency, and we
find that CPI inflation surprises regarding US data are more important for
the 5 minute and 15 minute sampling frequencies. For the 10 minute sam-
pling frequency surprises related to the Colombian trade Balance increase
the probability of a jump by 8.7%. However, it is specific shocks rather than
US (αNewsUS) or Colombian shocks (αNewsCOL) that are relevant because
when we aggregate all types of announcement or surprises, by country, the
effect is not statistically significant. When taking the sample we also ob-
served two announcements regarding a stable and one negative outlook (by
Fitch on February 22, 2018) on the Colombian sovereign rating. However,
we find no statistically significant effect on the jump frequency and also
there are mixed results regarding the sign across the different sampling fre-
quencies.

5We obtain the dates of the announcement and the information regarding the observed
and the expected macroeconomic indicator from Bloomberg.

22



O D E O N  N . º  2 4
141

odeon, issn: 1794-1113, e-issn: 2346-2140, N.° 24, enero-junio de 2023, pp. 119-147

Table 7: Logistic regression results and marginal effects for selected variables
Panel βT UE βT HU αNews αNewsCOL αNewsUS αRating Marginal effect
5 Minutes 0,303** 0,239* 0,076**

(0,138) (0,138) (0,034)
0,301** 0,220 1,768*** 0,369***
(0,139) (0,138) (0,657) (0,094)
0,308** 0,227 -0,0512 0,129 0,032
(0,139) (0,139) (0,130) (0,147) (0,037)
0,308** 0,244* -0,438 -0,106
(0,138) (0,138) (0,510) (0,118)

10 Minutes 0,138 0,258* 0,063*
(0,139) (0,138) (0,034)
0,129 0,263* 0,378* 0,094*
(0,139) (0,138) (0,222) (0,055)
0,131 0,254* 0,107 0,0736 0,017
(0,139) (0,139) (0,128) (0,146) (0,035)
0,137 0,257* 0,0630 0,015
(0,139) (0,138) (0,493) (0,121)

15 Minutes 0,143 0,250* 0,06*
(0,138) (0,137) (0,033)
0,146 0,250* 0,194 0,056
(0,138) (0,137) (0,464) (0,124)
0,139 0,250* 0,0612 0,0127 0,003
(0,138) (0,138) (0,128) (0,146) (0,035)
0,142 0,248* 0,148 0,036
(0,138) (0,137) (0,488) (0,119)

30 Minutes -0,0246 0,0993 0,022
(0,143) (0,142) (0,031)
-0,0191 0,106 0,377* 0,087*
(0,143) (0,142) (0,218) (0,052)
-0,0221 0,0908 -0,0203 0,0993 0,022
(0,144) (0,142) (0,134) (0,150) (0,033)
-0,0244 0,0996 -0,0225 -0,005
(0,143) (0,142) (0,513) (0,112)

Note: The last column indicates the marginal effect. For the panel based
on 5 and 15-minute sampling data, the marginal effects reported are for
Tuesday, CPI inflation surprise in the US, US news, and Credit rating an-
nouncements, respectively. For the panel based on 10-minute sampling data,
the marginal effects reported are for Thursday, Trade Balance surprise in
Colombia, US news, and Credit rating announcements, respectively. For the
panel based on 30-minute sampling data, the marginal effects reported are
for Thursday, Underemployment rate announcements in the US, US news,
and Credit rating announcements, respectively.

Source: Author’s calculations.

Looking closely at the 5 minute sampling frequency and the 37% increase
in the jump frequency due to the increase in the CPI inflation surprise in
US, we find a possible explanation of the importance of external shocks
to internal shocks. During the sampling period, 2017-2018, and further on
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in 2019, there was a succession of US CPI inflation reports that have been
significantly above expectations; these reports raised questions regarding the
tightening of monetary policy6. On the other hand, during the same period,
2017-2018, CPI inflation in Colombia was in line with the Central Bank’s
target. Therefore, it is not surprising that, during the period, investors in
the Colombian sovereign bond market were more sensible to changes in the
monetary policy in the US than any local shock.

We consider a broad range of announcements and surprises regarding
economic conditions, both internal and external shocks (US), and find that
the jump frequency is sensitive to specific shock that can have an incidence
on monetary policy but not the policy announcement themselves. It is
also important to note that external shocks seem to be more relevant than
local shocks. Furthermore, we find systematic day-of-the-week effects that
should be analyzed further to determine whether they provide arbitrage
opportunities.

5. Conclusions
In this document, we have found that price discontinuities are a common

occurrence for Colombian sovereign bonds. The results presented in sections
4.1 and 4.2 show the extent of this activity, though no relation was found
between maturity and univariate jump presence. There is no bond that
stands out above others in terms of jump activity, though T24 was the
least active bond for all sampling frequencies except for 5 minutes. Further
research should explore the relationship between jump activity and liquidity
along the term structure.

By looking at the daily coexceedances, we can extend the notion of
jumps to include simultaneous discontinuities across assets, which is inter-
esting because of its effects on the yield curve. An analysis of the results
shows that almost half of all jump activity consists of the cojumping of
two bonds. In particular, the assets which cojumped the most were the
ones with the shortest distance between maturities. This seems to suggest
that the behavior of the local market falls more in line with the market
segmentation theory, as opposed to the liquidity risk premium hypothesis.

The widespread presence of jumps in bond prices allows for an interesting
study of their weekly distribution. For both univariate and multivariate
jumps, the least common jump day is Monday. On all other weekdays, no
strong evidence indicates more or less jump frequency between the days.

A panel logit model for 6 bonds allows for a formal study of daily jump
seasonalities and the effects of economic announcements and surprises. As

6A discussion by Gregory Mankiw in The New York Times.
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we expected, there are multiple positive and significant day-of-the-week ef-
fects that diminish in number and significance w ith s ampling frequency. 
In particular, a persistent Thursday effect w as f ound f or e very sampling 
frequency except 30 minutes. We also find t hat j umps a re d etermined by 
surprises and specific economic variables rather than just the monetary pol-
icy announcements. In addition, we find t hat i nvestors i n t he Colombian 
sovereign bond market are more sensitive to external surprises that may im-
pact a change in US monetary policy than local changes in monetary policy 
or any other economic announcement.
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6. Appendix A: Complementary Results
This section includes the remaining results omitted in this chapter’s pre-

vious discussions. Proportion of exceedance results are shown in figures 10,
11, and 12 for 5, 10, and 15 minute sampling frequencies. These results help
highlight the interpretations given above, as well as illustrate the difficulty
that liquidity imposes on our analysis.

Figure 10: Jump statistic results in proportion to the critical value, 5 minute
sampling
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Figure 11: Jump statistic results in proportion to the critical value, 10
minute sampling
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Source: Author’s calculations.

Figure 12: Jump statistic results in proportion to the critical value, 15
minute sampling
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