Aplicación de autoencoders y autoencoders variacionales al sparse index tracking del S&P100

Application of Autoencoders and Variational Autoencoders to Sparse Index Tracking of the S&P100

Contenido principal del artículo

Resumen

Este artículo explora el uso de autoencoders (AE) y autoencoders variacionales (VAE) para abordar el problema de sparse index tracking aplicado al índice S&P100. Utilizando datos diarios de 2019 a 2023, se construyeron portafolios de seguimiento disperso con 5, 10, 15 y 20 activos, seleccionados mediante un enfoque de información comunal. Los resultados muestran que los VAE superan a los AE en términos de precisión y generalización, logrando un menor empirical tracking error en todos los portafolios. Este estudio destaca el potencial de los VAE como herramientas efectivas para replicar índices financieros bajo restricciones de cardinalidad, aunque no se consideraron costos de transacción ni otras fricciones del mercado.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Referencias (VER)

Benidis, K., Feng, Y. y Palomar, D. (2018). Sparse portfolios for high-dimensional financial index tracking, IEEE Trans. Signal Processing, 66(1), 155-170. 10.1109/TSP.2017.2762286. DOI: https://doi.org/10.1109/TSP.2017.2762286

Bogle, J. C. (1999). Common sense on mutual funds: New imperatives for the intelligent investor. John Wiley & Sons.

Bontempi, G., Ben Taieb, S. y Lecue, F. (2013). Machine learning strategies for time series forecasting. European Journal of Operational Research, 234(2), 361-370.

Coleman, T. F., Li, Y. y Henniger, J. (2006). Minimizing tracking error while restricting the number of assets. Journal of Risk, 8(4), 33. DOI: https://doi.org/10.21314/JOR.2006.134

Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical work. The Journal of Finance, 25(2), 383-417. DOI: https://doi.org/10.1111/j.1540-6261.1970.tb00518.x

Feng, Y. y Palomar, D. P. (2016). A signal processing perspective on financial engineering. Foundations and Trends® in Signal Processing, 9(1-2), 1-231. DOI: https://doi.org/10.1561/2000000072

Heaton, J. B., Polson, N. G. y Witte, J. H. (2017). Deep learning for finance: Deep portfolios. Applied Stochastic Models in Business and Industry, 33(1), 3-12. https://doi.org/10.1002/asmb.2209. DOI: https://doi.org/10.1002/asmb.2209

Hinton, G. E. y Salakhutdinov, R. (2006). Reducing the dimensionality of data with neural networks, Science, 313(5786), 504507. https://doi.org/10.1126/science.1127647 DOI: https://doi.org/10.1126/science.1127647

Kim, S. y Kim, S. (2019). Index tracking through deep latent representation learning. Quantitative Finance, 20(4), 639-652. https://doi.org/10.1080/14697688.2019.1683599 DOI: https://doi.org/10.1080/14697688.2019.1683599

Kingma, D. P. y Welling, M. (2019). An introduction to variational autoencoders. Foundations and Trends® in Machine Learning, 12(4), 307-392. DOI: https://doi.org/10.1561/2200000056

Malkiel, B. G. (2003). The efficient market hypothesis and its critics. Journal of Economic Perspectives, 17(1), 59-82. DOI: https://doi.org/10.1257/089533003321164958

Mutunge, P. y Haugland, D. (2018). Minimizing the tracking error of cardinality constrained portfolios. Computers & Operations Research, 90, 33-41. https://doi.org/10.1016/j.cor.2017.09.002 DOI: https://doi.org/10.1016/j.cor.2017.09.002

Ni, L. y Zhang, J. (2013). Portfolio optimization for index investing based on self-organizing neural network. In KIm, Y. H. t Yarlagadda, P., editor, Sensors, Measurement and intelligent DOI: https://doi.org/10.4028/www.scientific.net/AMM.303-306.1595

Materials (vol. 303-306, pp. 1595-1598). Applied Mechanics and Materials.

Ouyang, H., Zhang, X., Yan, H. (2019). Index tracking based on deep neural network. Cognitive Systems Research, 57, 107-114. https://doi.org/10.1016/j.cogsys.2018.10.022 DOI: https://doi.org/10.1016/j.cogsys.2018.10.022

Shu, L., Shi, F., Tian, G. (2020). High-dimensional index tracking based on the adaptive elastic net. Quantitative Finance, 20(9), 1513-1530. https://doi.org/10.1080/14697688.2020.1737328. DOI: https://doi.org/10.1080/14697688.2020.1737328

Silva, J. C. S. y de Almeida Filho, A. T. (2024). A systematic literature review on solution approaches for the index tracking problem. IMA Journal of Management Mathematics, 35(2), 163-196. DOI: https://doi.org/10.1093/imaman/dpad007

Strub, O. y Baumann, P. (2018). Optimal construction and rebalancing of index-tracking portfolios. European Journal of Operational Research, 264(1), 370-387. DOI: https://doi.org/10.1016/j.ejor.2017.06.055

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y. y Manzagol, P. A. (2008). Extracting and composing robust features with denoising autoencoders. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(8), 1439-1451.

Vincent, P., Lajoie, I., Bengio, Y. y Manzagol, P. A. (2010). Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. Journal of Machine Learning Research, 11, 3371-3408.

Wang, Y. J., Wu, L. y Wu, L. (2024). An integrative extraction approach for index tracking

portfolio construction and forecasting under a deep learning framework. The Journal of Supercomputing, 80, 2047-2066. https://doi.org/10.1007/s11227-023-05538-z. DOI: https://doi.org/10.1007/s11227-023-05538-z

Zhang, C., Liang, S., Lyu, F. y Fang, L. (2020). Stock-Index Tracking Optimization Using Auto-Encoders. Frontiers in Physic. 8, 388. https://doi.org/10.3389/fphy.2020.00388 DOI: https://doi.org/10.3389/fphy.2020.00388

Citado por