Implicaciones de asumir constante la tasa libre de riesgo y la volatilidad en el modelo binomial para valoración de opciones

Main Article Content

Autores

José Mauricio Castellanos Orejuela

Resumen

El método utilizado por la ciencia financiera se ha centrado en la valoración (dar/establecer un precio) bajo el principio de no arbitraje, lo cual lleva al resultado conocido como Ley de Único Precio; siendo así como se establecen los resultados de modelos como el de Black-Scholes y el de Cox-Ross-Rubinstein, el cual es una excelente aproximación al modelo continuo, en donde se pueden analizar de forma simplificada los complejos conceptos inmersos en el modelo Black-Scholes. Sin embargo, la aplicación de algunos de los supuestos que hacen parte de este, que a través del modelo CRR se pueden analizar de forma simplificada, permiten que en la práctica se pueda arbitrar en los mercados de opciones europeas.

Palabras clave:

Article Details

Licencia

Creative Commons License
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.

Los autores conservan los derechos de autor y garantizan a la revista el derecho de ser la primera publicación del trabajo. Se utiliza una Licencia Creative Commons Atribución-NoComercial-CompartirIgual. 

Referencias

Avellaneda, M. y Laurence, P. (1999). Quantitative modeling of derivative securities: from theory to practice. Inglaterra: Chapman & Hall/CRC.

Banco de la República y Banco Central de Colombia (2003). La estructura a plazo de las tasas de interés y su capacidad de predicción de distintas variables económicas. Reportes de Emisor – Investigación e Información Económica (44).

Battig, R. y Jarrow, R. (1999). The second theorem of asset pricing: a new approach. The Review of Financial Studies, 12 (5).

Brigo, D. y Mercurio, F. (2006). Interest rate models – Theory and practice. With smile, inflation and credit. Estados Unidos: Springer.

Capinski, M. y Zastawniak, T. (2011). Mathematics for Finance: An introduction to financial engineering. Estados Unidos: Springer.

Cox, J., Ross, S. y Rubinstein, M. (1979). Option Pricing: A simplified approach. Journal of Financial Economics, 7, 229-64.

Downarowicz, A. (2010). The first fundamental theorem of asset pricing. Revista de Economía Financiera, 21, 23-35.

Fabozzi, F. (2002). Interest rate, term structure and valuation modeling. New Jersey: John Wiley & Sons.

Fabozzi, F. (2007). Fixed income analysis (2nd ed.). New Jersey: John Wiley & Sons.

Harrison, M. y Kreps, D. M. (1979). Martingale and arbitrage in multiperiod security markets. Journal of Economic Theory, 20, 381-408.

Haug, E. G. (2007). The complete guide to option pricing formulas (2nd ed.). New York: McGraw-Hill.

Hull, J. (2014). Options, futures and other derivatives (9th ed.). Prentice Hall.

Martellini, L., Priaulet, P. y Priaulet, S. (2003). Fixed-Income Securities. Valuation, Risk Management and Portfolio Strategies. New Jersey: John Wiley & Sons Ltd.

Ross, S. (1976). The arbitrage theory of capital asset pricing. Journal of Economic Theory, 13, 341-360.

Salomon Brothers (1995). Understanding the Yield Curve. New York: Salomon Brothers.

Sherve, S. (2004). Stochastic Calculus for Finance I: The binomial asset pricing model. Estados Unidos: Springer.

Descargas

La descarga de datos todavía no está disponible.