Análisis de influencia de la red de colaboración de opciones reales

Influence analysis of real options collaboration network

Contenido principal del artículo

Resumen

La teoría de opciones reales surgió como una alternativa para valorar las flexibilidades arraigadas en proyectos y ha adquirido popularidad desde finales del siglo xx. A través de métodos bibliométricos y teoría de grafos, este documento crea un análisis de la red de colaboración compuesta por los investigadores de opciones reales, que incluye trabajos científicos de dieciocho años. En este esfuerzo identificamos meticulosamente a los autores y sus alianzas de coautoría, encontrando una topología distinta sin un componente gigante. Al desarrollar modelos no ponderados y ponderados, la red se desenreda y proporciona mediciones a partir de la propensión a la internacionalización y el cálculo de diferentes métricas de impacto, que reconocen a los investigadores más relevantes sobre el tema.

Palabras clave:

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Referencias (VER)

Archambault, É., Campbell, D., Gingras, Y., & Larivière, V. (2009). Comparing Bibliometric Statistics Obtained from the Web of Science and Scopus. Journal of the Association for Information Science and Technology, 60(7), 1320-1326. DOI: https://doi.org/10.1002/asi.21062

Barabási, A.-L., & Albert, R. (1999). Emergence of Scaling in Random Networks. Science, 286(5439), 509-512. DOI: https://doi.org/10.1126/science.286.5439.509

Barabási, A. L., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., & Vicsek, T. (2002). Evolution of the Social Network of Scientific Collaborations. Physica A: Statistical Mechanics and its Applications, 311(3), 590-614. DOI: https://doi.org/10.1016/S0378-4371(02)00736-7

Bar-Ilan, J. (2008). Which H-index? - A Comparison of WoS, Scopus and Google Scholar. Scientometrics, 74(2), 257-271. DOI: https://doi.org/10.1007/s11192-008-0216-y

Bar-Ilan, J., Levene, M., & Lin, A. (2007). Some Measures for Comparing Citation Databases. Journal of Informetrics, 1(1), 26-34. DOI: https://doi.org/10.1016/j.joi.2006.08.001

Barrat, A., Barthelemy, M., & Vespignani, A. (2007). The Architecture of Complex Weighted Networks: Measurements and Models. In Large Scale Structure and Dynamics of Complex Networks: From Information Technology to Finance and Natural Science (pp. 67-92): World Scientific. DOI: https://doi.org/10.1142/9789812771681_0005

Bartneck, C., & Kokkelmans, S. (2011). Detecting h-index Manipulation Through Self-Citation Analysis. Scientometrics, 87(1), 85-98. DOI: https://doi.org/10.1007/s11192-010-0306-5

Bastian, M., Heymann, S., & Jacomy, M. Gephi: An Open Source Software for Exploring and Manipulating Networks. In International AAAI Conference on Weblogs and Social Media. Association for the Advancement of Artificial Intelligence, 2009.

Borgatti, S. P. (2005). Centrality and Network Flow. Social Networks, 27(1), 55-71. DOI: https://doi.org/10.1016/j.socnet.2004.11.008

Borgatti, S. P., Carley, K. M., & Krackhardt, D. (2006). On the Robustness of Centrality Measures under Conditions of Imperfect Data. Social Networks, 28(2), 124-136. DOI: https://doi.org/10.1016/j.socnet.2005.05.001

Cervantes, E. P., & Mena-Chalco, J. P. (2010). A New Approach to Detect Communities in Multi-Weighted Co-Authorship Networks. In 2010 xxix International Conference of the Chilean Computer Science Society, Antofagasta, Chile, 15-19 Nov. 2010 2010 (pp. 131-138): IEEE. DOI: https://doi.org/10.1109/SCCC.2010.31

Cervantes, E. P., Mena-Chalco, J. P., & Cesar, R. M. (2012). Towards a Quantitative Academic Internationalization Assessment of Brazilian Research Groups. In 2012 IEEE 8th International Conference on E-Science, Chicago, IL, USA, 8-12 Oct. 2012 (pp. 1-8): IEEE.

Cervantes, E. P., Mena-Chalco, J. P., De Oliveira, M. C. F., & Cesar, R. M. (2013). Using Link Prediction to Estimate the Collaborative Influence of Researchers. In 2013 IEEE 9th International Conference on eScience, Beijing, China, 22-25 Oct. 2013 2013 (pp. 293-300): IEEE.

Clauset, A., Shalizi, C. R., & Newman, M. E. (2009). Power-law Distributions in Empirical Data. SIAM Review, 51(4), 661-703. DOI: https://doi.org/10.1137/070710111

Colizza, V., Flammini, A., Serrano, M. A., & Vespignani, A. (2006). Detecting Rich-Club Ordering in Complex Networks. Nature physics, 2(2), 110-115. DOI: https://doi.org/10.1038/nphys209

Dixit, A. K., & Pindyck, R. S. (1994). Investment Under Uncertainty. Princeton: Princeton University Press. DOI: https://doi.org/10.1515/9781400830176

Dixit, A. K., & Pindyck, R. S. (1995). The Options Approach to Capital Investment. Harvard Business Review, 73(3), 105-115.

Elsevier (2014). Scopus Quick Reference Guide. Available at: https://www.elsevier.com/__data/assets/pdf_file/0005/79196/scopus-quick-reference-guide.pdf.

Elsevier (2018a). Elsevier Developers. Available at http://api.elsevier.com.

Elsevier (2018b). Scopus. Available at: http://www.scopus.com.

Fagundes, H. C., & Nogueira, R. T. (2017). Analyzing the Collaboration Network of Real Options Authors. Paper presented at the 21st Annual International Conference on Real Options, Boston.

Falagas, M. E., Pitsouni, E. I., Malietzis, G. A., & Pappas, G. (2008). Comparison of PubMed, Scopus, Web of Science, and Google Scholar: Strengths and Weaknesses. The faseb journal, 22(2), 338-342. DOI: https://doi.org/10.1096/fj.07-9492LSF

Flaatten, H., Rasmussen, L. S., & Haney, M. (2016). Publication Footprints and Pitfalls of Bibliometry. Acta Anaesthesiologica Scandinavica, 60(1), 3-5. DOI: https://doi.org/10.1111/aas.12655

Freeman, L. C. (1978). Centrality in Social Networks Conceptual Clarification. Social Networks, 1(3), 215-239. DOI: https://doi.org/10.1016/0378-8733(78)90021-7

Fruchterman, T. M., & Reingold, E. M. (1991). Graph Drawing by Force-Directed Placement. Software: Practice and experience, 21(11), 1129-1164. DOI: https://doi.org/10.1002/spe.4380211102

GitHub (2017). R Package to Interface with Elsevier and Scopus APIs. Available at: https://github.com/muschellij2/rscopus.

Groos, O. V., & Pritchard, A. (1969). Documentation Notes. Journal of Documentation, 25(4), 344-349. DOI: https://doi.org/10.1108/eb026482

Haak, L. L., Fenner, M., Paglione, L., Pentz, E., & Ratner, H. (2012). ORCID: a System to Uniquely Identify Researchers. Learned Publishing, 25(4), 259-264. DOI: https://doi.org/10.1087/20120404

Hirsch, J. E. (2005). An Index to Quantify an Individual’s Scientific Research Output. Proceedings of the National academy of Sciences of the United States of America, 102(46), 16569. DOI: https://doi.org/10.1073/pnas.0507655102

Hou, H., Kretschmer, H., & Liu, Z. (2007). The Structure of Scientific Collaboration Networks in Scientometrics. Scientometrics, 75(2), 189-202. DOI: https://doi.org/10.1007/s11192-007-1771-3

Latapy, M. (2008). Main-Memory Triangle Computations for Very Large (Sparse [Power-Law]) Graphs. Theoretical Computer Science, 407(1-3), 458-473. DOI: https://doi.org/10.1016/j.tcs.2008.07.017

Leite, P., Mugnaini, R., & Leta, J. (2011). A New Indicator for International Visibility: Exploring Brazilian Scientific Community. Scientometrics, 88(1), 311. DOI: https://doi.org/10.1007/s11192-011-0379-9

Luthi, L., Tomassini, M., Giacobini, M., & Langdon, W. B. The Genetic Programming Collaboration Network and its Communities. In Proceedings of the 9th annual conference on Genetic and Evolutionary Computation, 2007 (pp. 1643-1650): ACM. DOI: https://doi.org/10.1145/1276958.1277284

Merton, R. K. (1968). The Matthew Effect in Science. Science, 159(3810), 56-63. DOI: https://doi.org/10.1126/science.159.3810.56

Newman, M. E. (2001). Scientific Collaboration Networks. II. Shortest Paths, Weighted Networks and Centrality. Physical Review E, 64(1), 016132. DOI: https://doi.org/10.1103/PhysRevE.64.016132

Newman, M. E. (2004). Coauthorship Networks and Patterns of Scientific Collaboration. Proceedings of the national academy of sciences, 101(suppl 1), 5200-5205. DOI: https://doi.org/10.1073/pnas.0307545100

Newman, M. E. (2009). Random Graphs with Clustering. Physical review letters, 103(5), 058701. DOI: https://doi.org/10.1103/PhysRevLett.103.058701

Newman, M. E., Watts, D. J., & Strogatz, S. H. (2002). Random Graph Models of Social Networks. Proceedings of the national academy of sciences, 99(suppl. 1), 2566-2572. DOI: https://doi.org/10.1073/pnas.012582999

Opsahl, T. (2010). Closeness Centrality in Networks with Disconnected Components. Available at: https://toreopsahl.com/2010/03/20/closeness-centrality-in-networkswith-disconnected-components/.

Opsahl, T., Agneessens, F., & Skvoretz, J. (2010). Node Centrality in Weighted Networks: Generalizing Degree and Shortest Paths. Social Networks, 32(3), 245-251. DOI: https://doi.org/10.1016/j.socnet.2010.03.006

Otte, E., & Rousseau, R. (2002). Social Network Analysis: A Powerful Strategy, also for the Information Sciences. Journal of information Science, 28(6), 441-453. DOI: https://doi.org/10.1177/016555150202800601

Tomassini, M., & Luthi, L. (2007). Empirical Analysis of the Evolution of a Scientific Collaboration Network. Physica A: Statistical Mechanics and its Applications, 385(2), 750-764. DOI: https://doi.org/10.1016/j.physa.2007.07.028

Trigeorgis, L. (1996). Real Options: Managerial Flexibility and Strategy in Resource Allocation. Cambridge (MA): MIT Press.

van Steen, M. (2010). Graph Theory and Complex Networks - An Introduction (vol. 144). United States: van Steen, Maarten.

Citado por