Análisis de influencia de la red de colaboración de opciones reales
Influence analysis of real options collaboration network
Contenido principal del artículo
Resumen
La teoría de opciones reales surgió como una alternativa para valorar las flexibilidades arraigadas en proyectos y ha adquirido popularidad desde finales del siglo xx. A través de métodos bibliométricos y teoría de grafos, este documento crea un análisis de la red de colaboración compuesta por los investigadores de opciones reales, que incluye trabajos científicos de dieciocho años. En este esfuerzo identificamos meticulosamente a los autores y sus alianzas de coautoría, encontrando una topología distinta sin un componente gigante. Al desarrollar modelos no ponderados y ponderados, la red se desenreda y proporciona mediciones a partir de la propensión a la internacionalización y el cálculo de diferentes métricas de impacto, que reconocen a los investigadores más relevantes sobre el tema.
Descargas
Detalles del artículo
Referencias (VER)
Archambault, É., Campbell, D., Gingras, Y., & Larivière, V. (2009). Comparing Bibliometric Statistics Obtained from the Web of Science and Scopus. Journal of the Association for Information Science and Technology, 60(7), 1320-1326. DOI: https://doi.org/10.1002/asi.21062
Barabási, A.-L., & Albert, R. (1999). Emergence of Scaling in Random Networks. Science, 286(5439), 509-512. DOI: https://doi.org/10.1126/science.286.5439.509
Barabási, A. L., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., & Vicsek, T. (2002). Evolution of the Social Network of Scientific Collaborations. Physica A: Statistical Mechanics and its Applications, 311(3), 590-614. DOI: https://doi.org/10.1016/S0378-4371(02)00736-7
Bar-Ilan, J. (2008). Which H-index? - A Comparison of WoS, Scopus and Google Scholar. Scientometrics, 74(2), 257-271. DOI: https://doi.org/10.1007/s11192-008-0216-y
Bar-Ilan, J., Levene, M., & Lin, A. (2007). Some Measures for Comparing Citation Databases. Journal of Informetrics, 1(1), 26-34. DOI: https://doi.org/10.1016/j.joi.2006.08.001
Barrat, A., Barthelemy, M., & Vespignani, A. (2007). The Architecture of Complex Weighted Networks: Measurements and Models. In Large Scale Structure and Dynamics of Complex Networks: From Information Technology to Finance and Natural Science (pp. 67-92): World Scientific. DOI: https://doi.org/10.1142/9789812771681_0005
Bartneck, C., & Kokkelmans, S. (2011). Detecting h-index Manipulation Through Self-Citation Analysis. Scientometrics, 87(1), 85-98. DOI: https://doi.org/10.1007/s11192-010-0306-5
Bastian, M., Heymann, S., & Jacomy, M. Gephi: An Open Source Software for Exploring and Manipulating Networks. In International AAAI Conference on Weblogs and Social Media. Association for the Advancement of Artificial Intelligence, 2009.
Borgatti, S. P. (2005). Centrality and Network Flow. Social Networks, 27(1), 55-71. DOI: https://doi.org/10.1016/j.socnet.2004.11.008
Borgatti, S. P., Carley, K. M., & Krackhardt, D. (2006). On the Robustness of Centrality Measures under Conditions of Imperfect Data. Social Networks, 28(2), 124-136. DOI: https://doi.org/10.1016/j.socnet.2005.05.001
Cervantes, E. P., & Mena-Chalco, J. P. (2010). A New Approach to Detect Communities in Multi-Weighted Co-Authorship Networks. In 2010 xxix International Conference of the Chilean Computer Science Society, Antofagasta, Chile, 15-19 Nov. 2010 2010 (pp. 131-138): IEEE. DOI: https://doi.org/10.1109/SCCC.2010.31
Cervantes, E. P., Mena-Chalco, J. P., & Cesar, R. M. (2012). Towards a Quantitative Academic Internationalization Assessment of Brazilian Research Groups. In 2012 IEEE 8th International Conference on E-Science, Chicago, IL, USA, 8-12 Oct. 2012 (pp. 1-8): IEEE.
Cervantes, E. P., Mena-Chalco, J. P., De Oliveira, M. C. F., & Cesar, R. M. (2013). Using Link Prediction to Estimate the Collaborative Influence of Researchers. In 2013 IEEE 9th International Conference on eScience, Beijing, China, 22-25 Oct. 2013 2013 (pp. 293-300): IEEE.
Clauset, A., Shalizi, C. R., & Newman, M. E. (2009). Power-law Distributions in Empirical Data. SIAM Review, 51(4), 661-703. DOI: https://doi.org/10.1137/070710111
Colizza, V., Flammini, A., Serrano, M. A., & Vespignani, A. (2006). Detecting Rich-Club Ordering in Complex Networks. Nature physics, 2(2), 110-115. DOI: https://doi.org/10.1038/nphys209
Dixit, A. K., & Pindyck, R. S. (1994). Investment Under Uncertainty. Princeton: Princeton University Press. DOI: https://doi.org/10.1515/9781400830176
Dixit, A. K., & Pindyck, R. S. (1995). The Options Approach to Capital Investment. Harvard Business Review, 73(3), 105-115.
Elsevier (2014). Scopus Quick Reference Guide. Available at: https://www.elsevier.com/__data/assets/pdf_file/0005/79196/scopus-quick-reference-guide.pdf.
Elsevier (2018a). Elsevier Developers. Available at http://api.elsevier.com.
Elsevier (2018b). Scopus. Available at: http://www.scopus.com.
Fagundes, H. C., & Nogueira, R. T. (2017). Analyzing the Collaboration Network of Real Options Authors. Paper presented at the 21st Annual International Conference on Real Options, Boston.
Falagas, M. E., Pitsouni, E. I., Malietzis, G. A., & Pappas, G. (2008). Comparison of PubMed, Scopus, Web of Science, and Google Scholar: Strengths and Weaknesses. The faseb journal, 22(2), 338-342. DOI: https://doi.org/10.1096/fj.07-9492LSF
Flaatten, H., Rasmussen, L. S., & Haney, M. (2016). Publication Footprints and Pitfalls of Bibliometry. Acta Anaesthesiologica Scandinavica, 60(1), 3-5. DOI: https://doi.org/10.1111/aas.12655
Freeman, L. C. (1978). Centrality in Social Networks Conceptual Clarification. Social Networks, 1(3), 215-239. DOI: https://doi.org/10.1016/0378-8733(78)90021-7
Fruchterman, T. M., & Reingold, E. M. (1991). Graph Drawing by Force-Directed Placement. Software: Practice and experience, 21(11), 1129-1164. DOI: https://doi.org/10.1002/spe.4380211102
GitHub (2017). R Package to Interface with Elsevier and Scopus APIs. Available at: https://github.com/muschellij2/rscopus.
Groos, O. V., & Pritchard, A. (1969). Documentation Notes. Journal of Documentation, 25(4), 344-349. DOI: https://doi.org/10.1108/eb026482
Haak, L. L., Fenner, M., Paglione, L., Pentz, E., & Ratner, H. (2012). ORCID: a System to Uniquely Identify Researchers. Learned Publishing, 25(4), 259-264. DOI: https://doi.org/10.1087/20120404
Hirsch, J. E. (2005). An Index to Quantify an Individual’s Scientific Research Output. Proceedings of the National academy of Sciences of the United States of America, 102(46), 16569. DOI: https://doi.org/10.1073/pnas.0507655102
Hou, H., Kretschmer, H., & Liu, Z. (2007). The Structure of Scientific Collaboration Networks in Scientometrics. Scientometrics, 75(2), 189-202. DOI: https://doi.org/10.1007/s11192-007-1771-3
Latapy, M. (2008). Main-Memory Triangle Computations for Very Large (Sparse [Power-Law]) Graphs. Theoretical Computer Science, 407(1-3), 458-473. DOI: https://doi.org/10.1016/j.tcs.2008.07.017
Leite, P., Mugnaini, R., & Leta, J. (2011). A New Indicator for International Visibility: Exploring Brazilian Scientific Community. Scientometrics, 88(1), 311. DOI: https://doi.org/10.1007/s11192-011-0379-9
Luthi, L., Tomassini, M., Giacobini, M., & Langdon, W. B. The Genetic Programming Collaboration Network and its Communities. In Proceedings of the 9th annual conference on Genetic and Evolutionary Computation, 2007 (pp. 1643-1650): ACM. DOI: https://doi.org/10.1145/1276958.1277284
Merton, R. K. (1968). The Matthew Effect in Science. Science, 159(3810), 56-63. DOI: https://doi.org/10.1126/science.159.3810.56
Newman, M. E. (2001). Scientific Collaboration Networks. II. Shortest Paths, Weighted Networks and Centrality. Physical Review E, 64(1), 016132. DOI: https://doi.org/10.1103/PhysRevE.64.016132
Newman, M. E. (2004). Coauthorship Networks and Patterns of Scientific Collaboration. Proceedings of the national academy of sciences, 101(suppl 1), 5200-5205. DOI: https://doi.org/10.1073/pnas.0307545100
Newman, M. E. (2009). Random Graphs with Clustering. Physical review letters, 103(5), 058701. DOI: https://doi.org/10.1103/PhysRevLett.103.058701
Newman, M. E., Watts, D. J., & Strogatz, S. H. (2002). Random Graph Models of Social Networks. Proceedings of the national academy of sciences, 99(suppl. 1), 2566-2572. DOI: https://doi.org/10.1073/pnas.012582999
Opsahl, T. (2010). Closeness Centrality in Networks with Disconnected Components. Available at: https://toreopsahl.com/2010/03/20/closeness-centrality-in-networkswith-disconnected-components/.
Opsahl, T., Agneessens, F., & Skvoretz, J. (2010). Node Centrality in Weighted Networks: Generalizing Degree and Shortest Paths. Social Networks, 32(3), 245-251. DOI: https://doi.org/10.1016/j.socnet.2010.03.006
Otte, E., & Rousseau, R. (2002). Social Network Analysis: A Powerful Strategy, also for the Information Sciences. Journal of information Science, 28(6), 441-453. DOI: https://doi.org/10.1177/016555150202800601
Tomassini, M., & Luthi, L. (2007). Empirical Analysis of the Evolution of a Scientific Collaboration Network. Physica A: Statistical Mechanics and its Applications, 385(2), 750-764. DOI: https://doi.org/10.1016/j.physa.2007.07.028
Trigeorgis, L. (1996). Real Options: Managerial Flexibility and Strategy in Resource Allocation. Cambridge (MA): MIT Press.
van Steen, M. (2010). Graph Theory and Complex Networks - An Introduction (vol. 144). United States: van Steen, Maarten.