Un análisis bibliométrico de la predicción de quiebra empresarial con Machine Learning

A Bibliometric Analysis of Business Bankruptcy Prediction with Machine Learning

Contenido principal del artículo

Resumen

El objetivo de este artículo es presentar un análisis bibliométrico sobre el uso que han tenido las técnicas de Machine Learning (ML) en el proceso de predic­ción de quiebra empresarial a través de la revisión de la base de datos Web of Science. Este ejercicio brinda información sobre el inicio y el proceso de adap­tación de dichas técnicas. Para ello, se identifican las diferentes técnicas de ml aplicadas en modelo de predicción de quiebras. Se obtiene como resultado 327 documentos, los cuales se clasifican por medida de evaluación del desempe­ño, área bajo la curva (AUC) y precisión (ACC), por ser las más utilizadas en el proceso de clasificación. Además, se identifica la relación entre investigadores, instituciones y países con mayor número de aplicaciones de este tipo. Los re­sultados evidencian que los algoritmos XGBoost, SVM, Smote, RFY DT presentan una capacidad predictiva mucho mayor que las metodologías tradicionales, en­focados en un horizonte de tiempo antes del suceso dada su mayor precisión. Así mismo, las variables financieras y no financieras contribuyen de manera favorable a dicha estimación.

Palabras clave:

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Referencias (VER)

Alaka, H. A., Oyedele, L. O., Owolabi, H. A., Kumar, V., Ajayi, S. O., Akinade, O. O. y Bilal, M. (2018). Systematic review of bankruptcy prediction models: Towards a framework for tool selection. Expert Systems with Applications, 94, 164-184. https://doi.org/10.1016/j.eswa.2017.10.040

Alaka, H., Oyedele, L., Owolabi, H., Akinade, O., Bilal, M. y Ajayi, S. (2019). A Big Data Analytics Approach for Construction Firms Failure Prediction Models. ieee Transactions on Engineering Management, 66(4), 689-698. https://doi.org/10.1109/ tem.2018.2856376

Alam, N., Gao, J. y Jones, S. (2021). Corporate failure prediction: An evaluation of deep learning vs discrete hazard models. Journal of International Financial Markets, Institutions and Money, 75(266), 101455. https://doi.org/10.1016/j.int¬fin.2021.101455

Alam, T. M., Shaukat, K., Mushtaq, M., Ali, Y., Khushi, M., Luo, S. y Wahab, A. (2021). Corporate Bankruptcy Prediction: An Approach towards Better Corporate World. Computer Journal, 64(11), 1731-1746. https://doi.org/10.1093/comjnl/bxaa056

Aljawazneh, H., Mora, A. M., Garcia-Sanchez, P. y Castillo-Valdivieso, P. A. (2021). Com-paring the performance of deep learning methods to predict companies’ financial failure. ieee Access, 9, 97010-97038. https://doi.org/10.1109/access.2021.3093461

Al-Milli, N., Hudaib, A. y Obeid, N. (2021). Population diversity control of genetic algorithm using a novel injection method for bankruptcy prediction problem. Mathematics, 9(8), 1-18. https://doi.org/10.3390/math9080823

Ansari, A., Ahmad, I. S., Bakar, A. A. y Yaakub, M. R. (2020). A hybrid metaheuristic method in training artificial neural network for bankruptcy prediction. ieee Access, 8, 176640-176650. https://doi.org/10.1109/access.2020.3026529

Antulov-Fantulin, N., Lagravinese, R. y Resce, G. (2021). Predicting bankruptcy of local government: A machine learning approach. Journal of Economic Behavior and Organization, 183, 681-699. https://doi.org/10.1016/j.jebo.2021.01.014

Antunes, F., Ribeiro, B. y Pereira, F. (2017). Probabilistic modeling and visualization for bankruptcy prediction. Applied Soft Computing Journal, 60, 831-843. https:// doi.org/10.1016/j.asoc.2017.06.043

Appiahene, P., Missah, Y. M. y Najim, U. (2019). Evaluation of information te¬chnology impact on bank’s performance: The Ghanaian experience. Inter¬national Journal of Engineering Business Management, 11, 1-10. https://doi. org/10.1177/1847979019835337

Barboza, F., Basso, L. F. C. y Kimura, H. (2021). New metrics and approaches for pre-dicting bankruptcy. Communications in Statistics: Simulation and Computation, 0(0), 1-18. https://doi.org/10.1080/03610918.2021.1910837

Barboza, F., Kimura, H. y Altman, E. (2017). Machine learning models and bankruptcy prediction. Expert Systems with Applications, 83, 405-417. https://doi.org/10.1016/j. eswa.2017.04.006

Ben Jabeur, S., Stef, N. y Carmona, P. (2022). Bankruptcy Prediction using the xg¬boost Algorithm and Variable Importance Feature Engineering. Computational Economics. https://doi.org/10.1007/s10614-021-10227-1

Bolaños Diaz , R. y Calderon Cahua, M. (2014). Introducción al meta-análisis tradi¬cional. Revista de Gastroenterología del Perú, 34(1), 45-51.

Botella, J. y Zamora, Á. (2017). El meta-análisis: una metodología para la investigación en educación. Educación XX1, 20(2), 17-38.

Boyacioglu, M. A., Kara, Y. y Baykan, Ö. K. (2009). Predicting bank financial failu¬res using neural networks, support vector machines and multivariate statistical methods: A comparative analysis in the sample of savings deposit insurance fund (sdif) transferred banks in Turkey. Expert Systems with Applications, 36(2 part 2), 3355-3366. https://doi.org/10.1016/j.eswa.2008.01.003

Bragoli, D., Ferretti, C., Ganugi, P., Marseguerra, G., Mezzogori, D. y Zammori, F. (2022). Machine-learning models for bankruptcy prediction: do industrial varia¬bles matter? Spatial Economic Analysis, 17, 156-177. https://doi.org/10.1080/174 21772.2021.1977377

Breiman, L. (2001). Machine Learning. Random Forests, 45, 5-32. https://doi. org/10.1023/A:1010933404324

Cao, Y., Liu, X., Zhai, J. y Hua, S. (2022). A two-stage Bayesian network model for corporate bankruptcy prediction. International Journal of Finance and Econo¬mics, 27(1), 455-472. https://doi.org/10.1002/ijfe.2162

Carmona, P., Climent, F. y Momparler, A. (2019). Predicting failure in the U.S. ban¬king sector: An extreme gradient boosting approach. International Review of Economics and Finance, 61, 304-323. https://doi.org/10.1016/j.iref.2018.03.008

Carmona, P., Dwekat, A. y Mardawi, Z. (2022). No more black boxes! Explaining the predictions of a machine learning xgboost classifier algorithm in business failure. Research in International Business and Finance, 61, 101649. https://doi. org/10.1016/j.ribaf.2022.101649

Chaudhuri, A. y De, K. (2011). Fuzzy Support Vector Machine for bankruptcy predic¬tion. Applied Soft Computing Journal, 11(2), 2472-2486. https://doi.org/10.1016/j. asoc.2010.10.003

Chen, M. Y. (2012). Visualization and dynamic evaluation model of corporate financial structure with self-organizing map and support vector regression. Applied Soft Computing Journal, 12(8), 2274-2288. https://doi.org/10.1016/j.asoc.2012.03.046

Chen, N., Ribeiro, B., Vieira, A. S., Duarte, J. y Neves, J. C. (2011). A genetic algorithm-based approach to cost-sensitive bankruptcy prediction. Expert Systems with Applications, 38(10), 12939-12945. https://doi.org/10.1016/j.eswa.2011.04.090

Chen, N., Vieira, A., Ribeiro, B., Duarte, J. y Neves, J. (2011). A stable credit rating model based on learning vector quantization. Intelligent Data Analysis, 15(2), 237-250. https://doi.org/10.3233/IDA-2010-0465

Chen, S., Härdle, W. K. y Moro, R. A. (2011). Modeling default risk with sup¬port vector machines. Quantitative Finance, 11(1), 135-154. https://doi. org/10.1080/14697680903410015

Chen, Y., Guo, J., Huang, J. y Lin, B. (2022). A novel method for financial distress prediction based on sparse neural networks with L1 / 2 regularization. Interna¬tional Journal of Machine Learning and Cybernetics, 13(7), 2089-2103. https:// doi.org/10.1007/s13042-022-01566-y

Chen, Z., Chen, W. y Shi, Y. (2020). Ensemble learning with label proportions for bankruptcy prediction. Expert Systems with Applications, 146, 113155. https:// doi.org/10.1016/j.eswa.2019.113155

Cheng, C., Jones, S. y Moser, W. J. (2018). Abnormal trading behavior of specific types of shareholders before us firm bankruptcy and its implications for firm bankruptcy prediction. Journal of Business Finance and Accounting, 45(9-10), 1100-1138. https://doi.org/10.1111/jbfa.12338

Cho, S., Vasarhelyi, M. A., Sun, T. y Zhang, C. (2020). Learning from machine learning in accounting and assurance. Journal of Emerging Technologies in Accounting, 17(1), 1-10. https://doi.org/10.2308/jeta-10718

Choi, H., Son, H. y Kim, C. (2018). Predicting financial distress of contractors in the construction industry using ensemble learning. Expert Systems with Applications, 110, 1-10. https://doi.org/10.1016/j.eswa.2018.05.026

Cielen, A., Peeters, L. y Vanhoof, K. (2004). Bankruptcy prediction using a data enve-lopment analysis. European Journal of Operational Research, 154(2), 526-532. https://doi.org/10.1016/S0377-2217(03)00186-3

Climent, F., Momparler, A. y Carmona, P. (2019). Anticipating bank distress in the Eu-rozone: An Extreme Gradient Boosting approach. Journal of Business Research, 101(June 2018), 885-896. https://doi.org/10.1016/j.jbusres.2018.11.015

Clintworth, M., Lyridis, D. y Boulougouris, E. (2021). Financial risk assessment in shipping: A holistic machine learning based methodology. In Maritime Economics and Logistics. https://doi.org/10.1057/s41278-020-00183-2

Cortés, E. A., Martínez, M. G. y Rubio, N. G. (2008). Linear discriminant analysis versus adaboost for failure forecasting. Revista Española de Financiación y Contabilidad, 37(137), 13-32. https://doi.org/10.1080/02102412.2008.10779637

Danenas, P. y Garsva, G. (2009). Support vector machines and their application in credit risk evaluation process. Transformations in Business and Economics, 8(3 suppl. b), 46-58.

Ding, K., Peng, X. y Wang, Y. (2019). A machine learning-based peer selection method with financial ratios. Accounting Horizons, 33(3), 75-87. https://doi.org/10.2308/ acch-52454

Ding, Y. y Simonoff, J. S. (2010). An investigation of missing data methods for clas-sification trees applied to binary response data. Journal of Machine Learning Research, 11, 131-170.

Drotár, P., Gnip, P., Zoričak, M. y Gazda, V. (2019). Small- and medium-enterprises bankruptcy dataset. Data in Brief, 25. https://doi.org/10.1016/j.dib.2019.104360

du Jardin, P., Veganzones, D. y Séverin, E. (2019). Forecasting Corporate Bankruptcy Using Accrual-Based Models. Computational Economics, 54(1), 7-43. https://doi. org/10.1007/s10614-017-9681-9

Ekinci, A. y Erdal, H. İ. (2017). Forecasting Bank Failure: Base Learners, Ensembles and Hybrid Ensembles. Computational Economics, 49(4), 677-686. https://doi. org/10.1007/s10614-016-9623-y

Elhoseny, M., Metawa, N., Sztano, G. y El-hasnony, I. M. (2022). Deep Learning-Based Model for Financial Distress Prediction. Annals of Operations Research. https:// doi.org/10.1007/s10479-022-04766-5

Endrikat, J., Guenther, E. y Hoppe, H. (2014). Making sense of conflicting empirical findings: A meta-analytic review of the relationship between corporate environ¬mental and financial performance. European Management Journal, 735-751.

Erdogan, B. E. (2013). Prediction of bankruptcy using support vector machines: An application to bank bankruptcy. Journal of Statistical Computation and Simula¬tion, 83(8), 1543-1555. https://doi.org/10.1080/00949655.2012.666550

Eygi Erdogan, B., Özöğür-Akyüz, S. y Karadayı Ataş, P. (2021). A novel approach for panel data: An ensemble of weighted functional margin svm models. Information Sciences, 557(xxxx), 373-381. https://doi.org/10.1016/j.ins.2019.02.045

Faris, H., Abukhurma, R., Almanaseer, W., Saadeh, M., Mora, A. M., Castillo, P. A. y Aljarah, I. (2020). Improving financial bankruptcy prediction in a highly imba¬lanced class distribution using oversampling and ensemble learning: a case from the Spanish market. Progress in Artificial Intelligence, 9(1), 31-53. https://doi. org/10.1007/s13748-019-00197-9

Farrokhi, A., Shirazi, F., Hajli, N. y Tajvidi, M. (2020). Using artificial intelligence to detect crisis related to events: Decision making in B2B by artificial intelli¬gence. Industrial Marketing Management, 91(February), 257-273. https://doi. org/10.1016/j.indmarman.2020.09.015

Fernández-Arias, D., López-Martín, M., Montero-Romero, T., Martínez-Estudillo, F. y Fernández-Navarro, F. (2018). Financial Soundness Prediction Using a Multi-classification Model: Evidence from Current Financial Crisis in oecd Banks. Com¬putational Economics, 52(1), 275-297. https://doi.org/10.1007/s10614-017-9676-6

Figlioli, B. y Lima, F. G. (2022). A proposed corporate distress and recovery prediction score based on financial and economic components. Expert Systems with Appli¬cations, 197, 116726. https://doi.org/10.1016/j.eswa.2022.116726

García, V., Marqués, A. I. y Sánchez, J. S. (2019). Exploring the synergetic effects of sample types on the performance of ensembles for credit risk and corporate bankruptcy prediction. Information Fusion, 47, 88-101. https://doi.org/10.1016/j. inffus.2018.07.004

Gogas, P., Papadimitriou, T. y Agrapetidou, A. (2018). Forecasting bank failures and stress testing: A machine learning approach. International Journal of Forecasting, 34(3), 440-455. https://doi.org/10.1016/j.ijforecast.2018.01.009

Gregova, E., Valaskova, K., Adamko, P., Tumpach, M. y Jaros, J. (2020). Predicting financial distress of slovak enterprises: Comparison of selected traditional and learning algorithms methods. Sustainability (Switzerland), 12(10). https://doi. org/10.3390/SU12103954

Guerra, P. y Castelli, M. (2021). Machine learning applied to banking supervision a literature review. Risks, 9(7), 1-24. https://doi.org/10.3390/risks9070136

Härdle, W., Lee, Y. J., Schäfer, D. y Yeh, Y. R. (2009). Variable selection and oversam-pling in the use of smooth support vector machines for predicting the default risk of companies. Journal of Forecasting, 28(6), 512-534. https://doi.org/10.1002/for.1109

Heo, J. y Yang, J. Y. (2014). AdaBoost based bankruptcy forecasting of Korean cons-truction companies. Applied Soft Computing Journal, 24, 494-499. https://doi. org/10.1016/j.asoc.2014.08.009

Hilal, A. M., Alsolai, H., Al-Wesabi, F. N., Al-Hagery, M. A., Hamza, M. A. y Duha¬yyim, M. Al. (2022). Artificial intelligence based optimal functional link neural network for financial data Science. Computers, Materials and Continua, 70(3), 6289-6304. https://doi.org/10.32604/cmc.2022.021522

Hosaka, T. (2019). Bankruptcy prediction using imaged financial ratios and convolu¬tional neural networks. Expert Systems with Applications, 117, 287-299. https:// doi.org/10.1016/j.eswa.2018.09.039

Hu, Y. C. (2009). Bankruptcy prediction using electre-based single-layer per¬ceptron. Neurocomputing, 72(13-15), 3150-3157. https://doi.org/10.1016/j.neu¬com.2009.03.002

Huang, J., Wang, H. y Kochenberger, G. (2017). Distressed Chinese firm prediction with discretized data. Management Decision, 55(5), 786-807. https://doi.org/10.1108/ MD-08-2016-0546

Huang, S. C., Tang, Y. C., Lee, C. W. y Chang, M. J. (2012). Kernel local Fisher dis-criminant analysis-based manifold-regularized svm model for financial distress predictions. Expert Systems with Applications, 39(3), 3855-3861. https://doi. org/10.1016/j.eswa.2011.09.095

Huang, Y. P. y Yen, M. F. (2019). A new perspective of performance comparison among machine learning algorithms for financial distress prediction. Applied Soft Com¬puting Journal, 83, 105663. https://doi.org/10.1016/j.asoc.2019.105663

J, U., Metawa, N., Shankar, K. y Lakshmanaprabu, S. K. (2020). Financial crisis prediction model using ant colony optimization. International Journal of In¬formation Management, 50(December), 538-556. https://doi.org/10.1016/j.ijin¬fomgt.2018.12.001

Jabeur, S., Gharib, C., Mefteh-Wali, S. y Arfi, W. (2021). CatBoost model and artificial intelligence techniques for corporate failure prediction. Technological Forecasting and Social Change, 166, 120658. https://doi.org/10.1016/j.techfore.2021.120658

Jandaghi, G., Saranj, A., Rajaei, R., Ghasemi, A. y Tehrani, R. (2021). Identification of the Most Critical Factors in Bankruptcy Prediction and Credit Classification of Companies. Iranian Journal of Management Studies, 14(4), 817-834. https://doi. org/10.22059/ijms.2021.285398.673712

Jiang, C. Q., Liang, K., Chen, H. y Ding, Y. (2014). Analyzing market performance via social media: A case study of a banking industry crisis. Science China Information Sciences, 57(5), 1-18. https://doi.org/10.1007/s11432-013-4860-3

Jindal, N. (2020). The Impact of Advertising and R&D on Bankruptcy Survi¬val: A Double-Edged Sword. Journal of Marketing, 84(5), 22-40. https://doi. org/10.1177/0022242920936205

Jones, S., Johnstone, D. y Wilson, R. (2017). Predicting Corporate Bankruptcy: An Evaluation of Alternative Statistical Frameworks. Journal of Business Finance and Accounting, 44(1-2), 3-34. https://doi.org/10.1111/jbfa.12218

Karminsky, A. M. y Burekhin, R. N. (2019). Comparative analysis of methods for fo-recasting bankruptcies of Russian construction companies. Business Informatics, 13(3), 52-66. https://doi.org/10.17323/1998-0663.2019.3.52.66

Khademolqorani, S., Zeinal Hamadani, A. y Mokhatab Rafiei, F. (2015). A hybrid analysis approach to improve financial distress forecasting: Empirical evi¬dence from Iran. Mathematical Problems in Engineering, 2015. https://doi. org/10.1155/2015/178197

Kim, H., Cho, H. y Ryu, D. (2020). Corporate default predictions using machine learning: Literature review. Sustainability (Switzerland), 12(16), 1-11. https://doi. org/10.3390/su12166325

Kim, H., Cho, H. y Ryu, D. (2022). Corporate Bankruptcy Prediction Using Machine Learning Methodologies with a Focus on Sequential Data. Computational Eco¬nomics, 59(3), 1231-1249. https://doi.org/10.1007/s10614-021-10126-5

Kim, M. J. y Kang, D. K. (2012). Classifiers selection in ensembles using genetic al¬gorithms for bankruptcy prediction. Expert Systems with Applications, 39(10), 9308-9314. https://doi.org/10.1016/j.eswa.2012.02.072

Kim, M. J. y Kang, D. K. (2010). Ensemble with neural networks for bankruptcy predic-tion. Expert Systems with Applications, 37(4), 3373-3379. https://doi.org/10.1016/j. eswa.2009.10.012

Kim, M. J., Kang, D. K. y Kim, H. B. (2015). Geometric mean based boosting algorithm with over-sampling to resolve data imbalance problem for bankruptcy prediction. Expert Systems with Applications, 42(3), 1074-1082. https://doi.org/10.1016/j. eswa.2014.08.025

Ko, P. C. y Lin, P. C. (2006). An evolution-based approach with modularized evaluations to forecast financial distress. Knowledge-Based Systems, 19(1), 84-91. https://doi. org/10.1016/j.knosys.2005.11.006

Kristóf, T. y Virág, M. (2020). A Comprehensive Review of Corporate Bankruptcy Prediction in Hungary. Journal of Risk and Financial Management, 13(2), 35. https://doi.org/10.3390/jrfm13020035

Lahmiri, S. y Bekiros, S. (2019). Can machine learning approaches predict corporate bankruptcy? Evidence from a qualitative experimental design. Quantitative Fi¬nance, 19(9), 1569-1577. https://doi.org/10.1080/14697688.2019.1588468

Lai, K. K., Yu, L., Huang, W. y Wang, S. (2006). A novel support vector machine meta-model for business risk identification. Lecture Notes in Computer Science (Inclu¬ding Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin¬formatics), 4099 lnai(71433001), 980-984. https://doi.org/10.1007/11801603_118

Le, H. H. y Viviani, J. L. (2018). Predicting bank failure: An improvement by imple¬menting a machine-learning approach to classical financial ratios. Research in International Business and Finance, 44(June), 16-25. https://doi.org/10.1016/j. ribaf.2017.07.104

Le, T., Lee, M. Y., Park, J. R. y Baik, S. W. (2018). Oversampling techniques for bankruptcy prediction: Novel features from a transaction dataset. Symmetry, 10(4). https://doi.org/10.3390/sym10040079

Le, T., Son, L. H., Vo, M. T., Lee, M. Y. y Baik, S. W. (2018). A cluster-based boosting algorithm for bankruptcy prediction in a highly imbalanced dataset. Symmetry, 10(7), 1-12. https://doi.org/10.3390/sym10070250

Le, T., Vo, B., Fujita, H., Nguyen, N. T. y Baik, S. W. (2019). A fast and accurate approach for bankruptcy forecasting using squared logistics loss with gpu-based extreme gradient boosting. Information Sciences, 494, 294-310. https://doi.org/10.1016/j. ins.2019.04.060

Le, T., Vo, M. T., Vo, B., Lee, M. Y. y Baik, S. W. (2019). A Hybrid Approach Using Oversampling Technique and Cost-Sensitive Learning for Bankruptcy Prediction. Complexity. https://doi.org/10.1155/2019/8460934

Li, H., Huang, H. Bin, Sun, J. y Lin, C. (2010). On sensitivity of case-based reasoning to optimal feature subsets in business failure prediction. Expert Systems with Applications, 37(7), 4811-4821. https://doi.org/10.1016/j.eswa.2009.12.034

Li, H., Sun, J. y Sun, B. L. (2009). Financial distress prediction based on OR-CBR in the principle of k-nearest neighbors. Expert Systems with Applications, 36(1), 643-659. https://doi.org/10.1016/j.eswa.2007.09.038

Li, X., Wang, F. y Chen, X. (2015). Support vector machine ensemble based on choquet integral for financial distress prediction. International Journal of Pattern Recog¬nition and Artificial Intelligence, 29(4). https://doi.org/10.1142/S0218001415500160

Li, Z., Crook, J. y Andreeva, G. (2017). Dynamic prediction of financial distress using Malmquist DEA. Expert Systems with Applications, 80, 94-106. https://doi. org/10.1016/j.eswa.2017.03.017

Li, Z., Feng, C. y Tang, Y. (2022). Bank efficiency and failure prediction: a nonparame¬tric and dynamic model based on data envelopment analysis. Annals of Operations Research, 315(1), 279-315. https://doi.org/10.1007/s10479-022-04597-4

Liang, D., Lu, C. C., Tsai, C. F. y Shih, G. A. (2016). Financial ratios and corporate governance indicators in bankruptcy prediction: A comprehensive study. European Journal of Operational Research, 252(2), 561-572. https://doi.org/10.1016/j. ejor.2016.01.012

Liang, D., Tsai, C. F., Dai, A. J. y Eberle, W. (2018). A novel classifier ensemble ap¬proach for financial distress prediction. Knowledge and Information Systems, 54(2), 437-462. https://doi.org/10.1007/s10115-017-1061-1

Liang, D., Tsai, C. F. y Wu, H. T. (2015). The effect of feature selection on finan¬cial distress prediction. Knowledge-Based Systems, 73(1), 289-297. https://doi. org/10.1016/j.knosys.2014.10.010

Lin, F., Yeh, C. C. y Lee, M. Y. (2013). A hybrid business failure prediction model using locally linear embedding and support vector machines. Romanian Journal of Economic Forecasting, 16(1), 82-97.

Lin, F., Yeh, C. C. y Lee, M. Y. (2011). The use of hybrid manifold learning and support vector machines in the prediction of business failure. Knowledge-Based Systems, 24(1), 95-101. https://doi.org/10.1016/j.knosys.2010.07.009

Lin, R. H., Wang, Y. T., Wu, C. H. y Chuang, C. L. (2009). Developing a business failure prediction model via rst, graand cbr. Expert Systems with Applications, 36(2 Part 1), 1593-1600. https://doi.org/10.1016/j.eswa.2007.11.068

Lin, W. C., Lu, Y. H. y Tsai, C. F. (2019). Feature selection in single and ensemble learning-based bankruptcy prediction models. Expert Systems, 36(1), 1-8. https:// doi.org/10.1111/exsy.12335

Lin, W. Y., Hu, Y. H. y Tsai, C. F. (2012). Machine learning in financial crisis prediction: A survey. ieee Transactions on Systems, Man and Cybernetics Part C: Applica¬tions and Reviews, 42(4), 421-436. https://doi.org/10.1109/tsmcc.2011.2170420

Liu, L. X., Liu, S. y Sathye, M. (2021). Predicting Bank Failures: A Synthesis of Literature and Directions for Future Research. Journal of Risk and Financial Management, 14(10), 474. https://doi.org/10.3390/jrfm14100474

Lu, Y., Zeng, N., Liu, X. y Yi, S. (2015). A New Hybrid Algorithm for Bankruptcy Prediction Using Switching Particle Swarm Optimization and Support Vec¬tor Machines. Discrete Dynamics in Nature and Society, 2015. https://doi. org/10.1155/2015/294930

Luo, B. (2022). A Method for Enterprise Network Innovation Performance Manage¬ment Based on Deep Learning and Internet of Things. Mathematical Problems in Engineering, 2022. https://doi.org/10.1155/2022/8277426

Ma, Y., Liu, H., Zhai, G. y Huo, Z. (2021). Financial Risk Early Warning Based on Wireless Network Communication and the Optimal Fuzzy svm Artificial Inte¬lligence Model. Wireless Communications and Mobile Computing, 2021. https:// doi.org/10.1155/2021/7819011

Mai, F., Tian, S., Lee, C. y Ma, L. (2019). Deep learning models for bankruptcy pre¬diction using textual disclosures. European Journal of Operational Research, 274(2), 743-758. https://doi.org/10.1016/j.ejor.2018.10.024

Manthoulis, G., Doumpos, M., Zopounidis, C. y Galariotis, E. (2020). An ordinal classification framework for bank failure prediction: Methodology and empirical evidence for us banks. European Journal of Operational Research, 282(2), 786- 801. https://doi.org/10.1016/j.ejor.2019.09.040

Marso, S. y Merouani, M. E. L. (2020). Bankruptcy prediction using hybrid neural networks with artificial bee colony. Engineering Letters, 28(4), 1191-1200.

Min, J. H. y Lee, Y. C. (2005). Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters. Expert Systems with Applications, 28(4), 603-614. https://doi.org/10.1016/j.eswa.2004.12.008

Mousavi, M. M. y Lin, J. (2020). The application of promethee multi-criteria decision aid in financial decision making: Case of distress prediction models evalua¬tion. Expert Systems with Applications, 159, 113438. https://doi.org/10.1016/j. eswa.2020.113438

Nyitrai, T. y Virág, M. (2019). The effects of handling outliers on the performance of bankruptcy prediction models. Socio-Economic Planning Sciences, 67(August 2017), 34-42. https://doi.org/10.1016/j.seps.2018.08.004

Park, M. S., Son, H., Hyun, C. y Hwang, H. J. (2021). Explainability of machine lear¬ning models for bankruptcy prediction. IEEE Access, 9, 124887-124899. https:// doi.org/10.1109/access.2021.3110270

Perboli, G. y Arabnezhad, E. (2021). A Machine Learning-based dss for mid and long-term company crisis prediction. Expert Systems with Applications, 174(July 2020), 114758. https://doi.org/10.1016/j.eswa.2021.114758

Pérez-Pons, M. E., Parra-Dominguez, J., Hernández, G., Herrera-Viedma, E. y Corchado, J. M. (2022). Evaluation metrics and dimensional reduction for binary classifica¬tion algorithms: A case study on bankruptcy prediction. Knowledge Engineering Review, 37(4), 8-10. https://doi.org/10.1017/S026988892100014X

Ping, W., Wang, F., Wang, A. y Huang, Y. (2021). Risk Early Warning Research on China’s Futures Company. Emerging Markets Finance and Trade, 57(8), 2259- 2270. https://doi.org/10.1080/1540496X.2019.1689355

Prasad, M. V. N. K., Nickolas, S. y Gangadharan, G. R. (2019). General representational automata using deep neural networks. Data and Knowledge Engineering, 122, 159-180. https://doi.org/10.1016/j.datak.2019.06.004

Qian, H., Wang, B., Yuan, M., Gao, S. y Song, Y. (2022). Financial distress prediction using a corrected feature selection measure and gradient boosted decision tree. Expert Systems with Applications, 190(February 2021). https://doi.org/10.1016/j. eswa.2021.116202

Ravi Kumar, P. y Ravi, V. (2007). Bankruptcy prediction in banks and firms via sta¬tistical and intelligent techniques–A review. European Journal of Operational Research, 180(1), 1-28. https://doi.org/10.1016/j.ejor.2006.08.043

Romero Martínez, M., Carmona Ibáñez, P. y Pozuelo Campillo, J. (2021). La predicción del fracaso empresarial de las cooperativas españolas. Aplicación del Algoritmo Extreme Gradient Boosting. Revista de Economía Pública, Social y Cooperativa, 255-288.

Ribeiro, B., Silva, C., Chen, N., Vieira, A. y Carvalho Das Neves, J. (2012). Enhanced default risk models with svm+. Expert Systems with Applications, 39(11), 10140- 10152. https://doi.org/10.1016/j.eswa.2012.02.142

Schalck, C. y Yankol-Schalck, M. (2021). Predicting French sme failures: new evidence from machine learning techniques. Applied Economics, 53(51), 5948-5963. https:// doi.org/10.1080/00036846.2021.1934389

Sermpinis, G., Tsoukas, S. y Zhang, Y. (2022). Modelling failure rates with machine-learning models: Evidence from a panel of uk firms. European Financial Ma¬nagement, (May). https://doi.org/10.1111/eufm.12369

Shetty, S., Musa, M. y Brédart, X. (2022). Bankruptcy Prediction Using Machine Learning Techniques. Journal of Risk and Financial Management, 15(1). https:// doi.org/10.3390/jrfm15010035

Shi, Y. y Li, X. (2019). A bibliometric study on intelligent techniques of bankruptcy prediction for corporate firms. Heliyon, 5(12), e02997. https://doi.org/10.1016/j. heliyon.2019.e02997

Shi, Y. y Li, X. (2019). An overview of bankruptcy prediction models for corporate firms: A systematic literature review. Intangible Capital, 15(2), 114-127. https:// doi.org/10.3926/ic.1354

Shrivastav, S. K. y Janaki Ramudu, P. (2020). Bankruptcy prediction and stress quan-tification using support vector machine: Evidence from Indian banks. Risks, 8(2). https://doi.org/10.3390/risks8020052

Sinelnikova-Muryleva, E. V., Gorshkova, T. G. y Makeeva, N. V. (2018). Default fo-recasting in the Russian Banking sector. Ekonomicheskaya Politika, 13, 8-27. https://doi.org/10.18288/1994-5124-2018-2-01

Sinelnikova-Muryleva, E. V., Gorshkova, T. G. y Makeeva, N. V. (2018). Default fo-recasting in the Russian Banking sector. Ekonomicheskaya Politika, 13(2), 8-27. https://doi.org/10.18288/1994-5124-2018-2-01

Siswoyo, B., Abas, Z. A., Pee, A. N. C., Komalasari, R. y Suyatna, N. (2022). Ensem¬ble machine learning algorithm optimization of bankruptcy prediction of bank. iaes International Journal of Artificial Intelligence, 11(2), 679-686. https://doi. org/10.11591/ijai.v11.i2.pp679-686

Smith, M. y Alvarez, F. (2022). Predicting Firm-Level Bankruptcy in the Spanish Economy Using Extreme Gradient Boosting. In Computational Economics (Vol. 59). https://doi.org/10.1007/s10614-020-10078-2

Smiti, S. y Soui, M. (2020). Bankruptcy Prediction Using Deep Learning Approach Based on Borderline smote. Information Systems Frontiers, 22(5), 1067-1083. https://doi.org/10.1007/s10796-020-10031-6

Son, H., Hyun, C., Phan, D. y Hwang, H. J. (2019). Data analytic approach for bankruptcy prediction. Expert Systems with Applications, 138, 112816. https://doi.org/10.1016/j. eswa.2019.07.033

Song, Y. y Peng, Y. (2019). A mcdm-Based Evaluation Approach for Imbalanced Clas-sification Methods in Financial Risk Prediction. IEEE Access, 7(Mcdm), 84897- 84906. https://doi.org/10.1109/access.2019.2924923

Soui, M., Smiti, S., Mkaouer, M. W. y Ejbali, R. (2020). Bankruptcy Prediction Using Stacked Auto-Encoders. Applied Artificial Intelligence, 34(1), 80-100. https://doi. org/10.1080/08839514.2019.1691849

Sue, K. L., Tsai, C. F. y Chiu, A. (2021). The data sampling effect on financial dis¬tress prediction by single and ensemble learning techniques. Communications in Statistics–Theory and Methods, 0(0), 1-12. https://doi.org/10.1080/03610926. 2021.1992439

Sutiene, K., Luksys, K. y Kundeliene, K. (2021). Towards Automation of Short-Term Financial Distress Detection: A Real-World Case Study. International Journal of Information Technology and Decision Making, 20(4), 1299-1333. https://doi. org/10.1142/S0219622021500334

Tang, X., Li, S., Tan, M. y Shi, W. (2020). Incorporating textual and management fac¬tors into financial distress prediction: A comparative study of machine learning methods. Journal of Forecasting, 39(5), 769-787. https://doi.org/10.1002/for.2661

Tian, Y., Shi, Y. y Liu, X. (2012). Recent advances on support vector machines research. Technological and Economic Development of Economy, 18(1), 5-33. https://doi. org/10.3846/20294913.2012.661205

Tkáč, M. y Verner, R. (2016). Artificial neural networks in business: Two decades of research. Applied Soft Computing Journal, 38, 788-804. https://doi.org/10.1016/j. asoc.2015.09.040

Tsai, C. F. (2014). Combining cluster analysis with classifier ensembles to predict financial distress. Information Fusion, 16(1), 46-58. https://doi.org/10.1016/j. inffus.2011.12.001

Tsai, C. F. (2009). Feature selection in bankruptcy prediction. Knowledge-Based Sys¬tems, 22(2), 120-127. https://doi.org/10.1016/j.knosys.2008.08.002

Tsai, C. F. (2008). Financial decision support using neural networks and support vector machines. Expert Systems, 25(4), 380-393. https://doi.org/10.1111/j.1468- 0394.2008.00449.x

Tsai, C. F. (2020). Two-stage hybrid learning techniques for bankruptcy prediction*. Statistical Analysis and Data Mining, 13(6), 565-572. https://doi.org/10.1002/ sam.11482

Tsai, C. F., Hsu, Y. F. y Yen, D. C. (2014). A comparative study of classifier ensembles for bankruptcy prediction. Applied Soft Computing Journal, 24, 977-984. https:// doi.org/10.1016/j.asoc.2014.08.047

Tsai, C. F. y Wu, J. W. (2008). Using neural network ensembles for bankruptcy pre¬diction and credit scoring. Expert Systems with Applications, 34(4), 2639-2649. https://doi.org/10.1016/j.eswa.2007.05.019

Tserng, H. P., Lin, G. F., Tsai, L. K. y Chen, P. C. (2011). An enforced support vector machine model for construction contractor default prediction. Automation in Construction, 20(8), 1242-1249. https://doi.org/10.1016/j.autcon.2011.05.007

Tunio, F. H., Ding, Y., Agha, A. N., Agha, K. y Panhwar, H. U. R. Z. (2021). Financial Distress Prediction Using Adaboost and Bagging in Pakistan Stock Exchange. Journal of Asian Finance, Economics and Business, 8(1), 665-673. https://doi. org/10.13106/jafeb.2021.vol8.no1.665

Uthayakumar, J., Metawa, N., Shankar, K. y Lakshmanaprabu, S. K. (2020). Intelligent hybrid model for financial crisis prediction using machine learning techniques. Information Systems and E-Business Management, 18(4), 617-645. https://doi. org/10.1007/s10257-018-0388-9

Valencia, C., Cabrales, S., Garcia, L., Ramirez, J. y Calderona, D. (2019). Generalized additive model with embedded variable selection for bankruptcy prediction: Pre¬diction versus interpretation. Cogent Economics and Finance, 7(1). https://doi.or g/10.1080/23322039.2019.1597956

Viswanathan, P. K., Srinivasan, S. y Hariharan, N. (2020). Predicting Financial Health of Banks for Investor Guidance Using Machine Learning Algorithms. Journal of Emer¬ging Market Finance, 19(2), 226-261. https://doi.org/10.1177/0972652720913478

Wang, G., Ma, J. y Yang, S. (2014). An improved boosting based on feature selection for corporate bankruptcy prediction. Expert Systems with Applications, 41(5), 2353-2361. https://doi.org/10.1016/j.eswa.2013.09.033

Wang, G., Ma, J., Chen, G. y Yang, Y. (2020). Financial distress prediction: Regularized sparse-based Random Subspace with er aggregation rule incorporating textual disclosures. Applied Soft Computing Journal, 90, 106152. https://doi.org/10.1016/j. asoc.2020.106152

Wang, H. y Liu, X. (2021). Undersampling bankruptcy prediction: Taiwan bankruptcy data. PLoS one, 16(7 July), 1-17. https://doi.org/10.1371/journal.pone.0254030

Wang, M., Chen, H., Li, H., Cai, Z., Zhao, X., Tong, C., … Xu, X. (2017). Grey wolf optimization evolving kernel extreme learning machine: Application to bankruptcy prediction. Engineering Applications of Artificial Intelligence, 63, 54-68. https:// doi.org/10.1016/j.engappai.2017.05.003

Whiting, D. G., Hansen, J. V., McDonald, J. B., Albrecht, C. y Albrecht, W. S. (2012). Ma-chine learning methods for detecting patterns of management fraud. Computatio¬nal Intelligence, 28(4), 505-527. https://doi.org/10.1111/j.1467-8640.2012.00425.x

Xiaosi, X., Ying, C. y Haitao, Z. (2011). The comparison of enterprise bankruptcy forecasting method. Journal of Applied Statistics, 38(2), 301-308. https://doi. org/10.1080/02664760903406470

Xu, W., Pan, Y., Chen, W. y Fu, H. (2019). Forecasting corporate failure in the Chine¬se energy sector: A novel integrated model of deep learning and support vector machine. Energies, 12(11). https://doi.org/10.3390/en12122251

Yarahmadia, H., Shirib, M., Navidic, H. y Sharifid, A. (2021). A bankruptcy based approach to solving multi-agent credit assignment problem. Ijnaa.Semnan.Ac.Ir, 12(December), 1987-2018. https://ijnaa.semnan.ac.ir/index.php/themes/base/front/ assets/plugins/journal/journal/article_5968_aeb4b80f492120d6f67d6f57c5e9c0e2. pdf

Yousaf, U. Bin, Jebran, K. y Wang, M. (2022). A comparison of static, dynamic and machine learning models in predicting the financial distress of Chinese firms. Journal for Economic Forecasting, 1, 122-138.

Yu, Q., Miche, Y., Séverin, E. y Lendasse, A. (2014). Bankruptcy prediction using Extreme Learning Machine and financial expertise. Neurocomputing, 128, 296- 302. https://doi.org/10.1016/j.neucom.2013.01.063

Zeng, S., Li, Y., Yang, W. y Li, Y. (2020). A financial distress prediction model based on sparse algorithm and support vector machine. Mathematical Problems in Engineering. https://doi.org/10.1155/2020/5625271

Zhang, X. y Hu, L. (2016). A nonlinear subspace multiple kernel learning for financial distress prediction of Chinese listed companies. Neurocomputing, 177, 636-642. https://doi.org/10.1016/j.neucom.2015.11.078

Zhang, Y., Liu, R., Heidari, A. A., Wang, X., Chen, Y., Wang, M. y Chen, H. (2021). Towards augmented kernel extreme learning models for bankruptcy prediction: Algorithmic behavior and comprehensive analysis. Neurocomputing, 430, 185- 212. https://doi.org/10.1016/j.neucom.2020.10.038

Zhao, D., Huang, C., Wei, Y., Yu, F., Wang, M. y Chen, H. (2017). An effective compu-tational model for bankruptcy prediction using kernel extreme learning machine approach. Computational Economics, 49(2), 325-341. https://doi.org/10.1007/ s10614-016-9562-7

Ziȩba, M., Tomczak, S. K. y Tomczak, J. M. (2016). Ensemble boosted trees with synthetic features generation in application to bankruptcy prediction. Expert Systems with Applications, 58, 93-101. https://doi.org/10.1016/j.eswa.2016.04.001

Zoričák, M., Gnip, P., Drotár, P. y Gazda, V. (2020). Bankruptcy prediction for small-and medium-sized companies using severely imbalanced datasets. Economic Modelling, 84(February), 165-176. https://doi.org/10.1016/j.econmod.2019.04.003

Zou, Y., Gao, C. y Gao, H. (2022). Business Failure Prediction Based on a Cost-Sensitive Extreme Gradient Boosting Machine. ieee Access, 10, 42623-42639. https://doi. org/10.1109/access.2022.3168857

Citado por