Empirical evidence of jump behavior in the Colombian bond market

Empirical evidence of jump behavior in the Colombian bond market

Contenido principal del artículo

Resumen

La incorporación de procesos con saltos en la modelación de precios se ha demostrado que mejora el pronóstico de volatilidad, la valoración de activos y las coberturas de un portafolio. El estudio encuentra que en el mercado local de bonos soberanos de Colombia se observan saltos en la formación de precios a lo largo de toda la curva, con diferentes intensidades. Contrario a lo esperado, no se identifica una frecuencia de saltos menor en los bonos de largo plazo en comparación con los bonos de corto plazo. Además, se encuentra que los bonos con periodos de maduración similares tienen una mayor frecuencia de saltos en comparación con aquellos que tienen periodos al vencimiento más distantes. Esto indica una relación entre la proximidad en los periodos de maduración y la ocurrencia de saltos en los precios de los bonos soberanos. En cuanto a las estacionalidades, se encuentran patrones semanales persistentes en la frecuencia de los saltos. Asimismo, se observan aumentos significativos en la frecuencia de los saltos asociados a sorpresas en la información económica que afecta la política monetaria de Estados Unidos. Sin embargo, no se encuentran efectos similares asociados a anuncios específicos de política monetaria interna.

Palabras clave:

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Referencias (VER)

Andersen, T. G., Bollerslev, T., Diebold, F. X., and Ebens, H. (2001). The distribution of realized stock return volatility. Journal of Financial Economics, 61 (1), 43-76. https://doi.org/10.1016/S0304-405X(01)0055-1

Andersen, T. G., Bollerslev, T., Diebold, F. X., and Ebens, H. (2003a). Some like it smooth, and some like it rough: Untangling continuous and jump com-ponents in measuring, modeling, and forecasting asset return volatility. Working paper No. 2003/35, Goethe University, Center for Financial Studies (CFS), Frankfurt. http://dx.doi.org/10.2139/ssrn.473204

Andersen, T. G., Bollerslev, T., Diebold, F. X., and Labys, P. (2003b). Modeling and forecasting realized volatility. Econometrica, 71 (2), 579-625. https://doi.org/10.1111/1468-0262.00418

Andersen, T. G., Bollerslev, T., and Diebold, F. X. (2007). Roughing it up: Including jump components in the measurement, modeling, and forecasting of return volatility. The Review of Economics and Statistics, 89 (4), 701-720. https://doi.org/10.1162/rest.89.4.701

Andersen, T. G., Bollerslev, T., Diebold, F. X., and Ebens, H. (2003a). Some like it Bae, K.-H., Karolyi, G. A., and Stulz, R. M. (2003). A new approach to measuring financial contagion. The Review of Financial Studies, 16 (3), 717-763. https://www.jstor.org/stable/1262714

Bandi, F. M. and Russell, J. R. (2006). Separating microstructure noise from volatility. Journal of Financial Economics, 79 (3), 655-692. https://doi.org/10.1016/j.jfineco.2005.01.005

Barndorff-Nielsen, O. E. and Shephard, N. (2004a). Measuring the impact of jumps in multivariate price processes using bipower covariation. Technical report, Discussion paper, Nuffield College, Oxford University.

Barndorff-Nielsen, O. E. and Shephard, N. (2004b). Power and bipower variation with stochastic volatility and jumps. Journal of Financial Econometrics, 2 (1), 1-37. https://doi.org/10.1093/jjfinec/nbh001

Barndorff-Nielsen, O. E. and Shephard, N. (2005a). How accurate is the asymptotic approximation to the distribution of realized variance. In Identification and Inference for Econometric Models. (Eds.) D. W. Andrews & J. H. Stock, (pp. 306-311). Cambridge University Press.

Barndorff-Nielsen, O. E. and Shephard, N. (2005b). Variation, jumps, market frictions and high frequency data in financial econometrics. Working Paper No. 2005-W16. http://dx.doi.org/10.2139/ssrn.751984

Bollerslev, T., Law, T. H., & Tauchen, G. (2008). Risk, jumps, and diversification. Journal of Econometrics, 144(1), 234-256. https://doi.org/10.1016/j.jeconom.2008.01.006

Das, S. R. (2002). The surprise element: jumps in interest rates. Journal of Econometrics, 106(1), 27-65. https://doi.org/10.1016/S0304-4076(01)00085

Dungey, M., McKenzie, M., and Smith, L. V. (2009). Empirical evidence on jumps in the term structure of the us treasury market. Journal of Empirical Finance, 16 (3), 430-445. https://doi.org/10.1016/j.jempfin.2008.12.002

Goyenko, R., Subrahmanyam, A., and Ukhov, A. ( 2011). The term structure of Johannes, M. (2004). The statistical and economic role of jumps in continuous-time interest rate models. The Journal of Finance, 59 (1), 227-260. https://www.jstor.org/stable/3694895

Huang, X., & Tauchen, G. (2005). The relative contribution of jumps to total price variance. Journal of Financial Econometrics, 3(4), 456-499. https://doi.org/10.1093/jjfinec/nbi025

Lee, S. S. and Mykland, P. A. (2012). Jumps in equilibrium prices and market icrostructure noise. Journal of Econometrics, 168(2), 396-406. https://doi.org/10.1016/j.jeconom.2012.03.001.

Modigliani, F. and Sutch, R. (1966). Innovations in interest rate policy. The American Economic Review, 56(1/2), 178-197. https://www.jstor.org/stable/1821281.

Novotný, J. and Urga, G. (2017). Testing for cojumps in financial markets. Journal of Financial Econometrics, 16(1), 118-128. https://doi.org/10.1093/jjfinecnxb

Piazzesi, M. (2005). Bond yields and the federal reserve. Journal of Political Economy, 113(2), 311-344. https://doi.org/10.1086/427466

Sheppard, K. (2006). Realized covariance and scrambling. Unpublished document.

Zhang, L., Mykland P. A., & Aït-Sahalia, Y. (2005). A tale of two-time scales: Integrated volatility with noisy high-frequency data. Journal of the American Statistical Association, 100(472), 1394-1411.https://doi.org/10.1198/016214505000000169

Citado por