Optimización de portafolio con cardinalidad usando algoritmos genéticos de población dual
Portfolio optimization with cardinality using dual population genetic algorithms
Contenido principal del artículo
Resumen
En algunos estudios se ha encontrado que, muchas veces, los algoritmos genéticos con una sola población para la solución de la optimización de portafolio con cardinalidad convergen lentamente y no obtienen los mejores resultados. Una manera de mejorar el desempeño de estos algoritmos ha sido incorporar una población adicional que actúe como buscador de máximos y mínimos locales; de esta manera, se aumenta la probabilidad de encontrar el óptimo global de la solución en un menor tiempo.
Este documento busca identificar el rendimiento en muestra y fuera de muestra de un portafolio de activos de renta variable con restricciones de cardinalidad usando algoritmos genéticos con una sola población y con población doble, estableciendo como universo el índice Dow Jones. Los resultados muestran que el desempeño puede verse afectado por los parámetros seleccionados para realizar la optimización, por lo que es importante tener en cuenta el error en la estimación de la media y la varianza del portafolio.
Palabras clave:
Descargas
Detalles del artículo
Referencias (VER)
Amenc, N. y Le sourd, V. (2003). Portfolio Theory and Performance Analysis. John Wiley & Sons Ltd.
Arnone, S., Loraschi, A. y Tettamanzi, A. (1993). A genectic approach to portfolio selection. In Neural Network World (pp. 597-604). https://doi.org/10.1007/978-3- 7091-7535-4_100
Best, M. J. (2017). Quadratic programming with computer programs. In Quadratic Programming with Computer Programs. https://doi.org/10.1201/9781315120881 DOI: https://doi.org/10.1201/9781315120881
Chang, T. J., Meade, N., Beasley, J. E. y Sharaiha, Y. M. (2000). Heuristics for cardinality constrained portfolio optimisation. Computers and Operations Research, 27(13), 1271-1302. https://doi.org/10.1016/S0305-0548(99)00074-X DOI: https://doi.org/10.1016/S0305-0548(99)00074-X
Christopherson, J. A., Cariño, D. Runge. y Ferson, W. E. (2009). Portfolio performance measurement and benchmarking. McGraw-Hill.
Coley, D. (1999). An introduction to genetic algorithms for scientists and engineers. World Scientific. DOI: https://doi.org/10.1142/3904
Deb, K. (2000). An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering, 186(2-4), 311-338. https://doi.org/10.1016/S0045-7825(99)00389-8 DOI: https://doi.org/10.1016/S0045-7825(99)00389-8
DeMiguel, V., Garlappi, L. y Uppal, R. (2008). The Society for Financial Studies Optimal versus Naive Diversification: How Inefficient is the 1 / N Portfolio Strategy? Review of Financial Studies, 22(5), 1915-1953. https://doi.org/10.1093/rfs/hhm075 DOI: https://doi.org/10.1093/rfs/hhm075
Fabozzi, F. J., Kolm, P. N., Pachamanova, D. A. y Focardi, S. M. (2007). Robust portfolio optimization. Journal of Portfolio Management, 33(Issue 3). https://doi.org/10.3905/jpm.2007.684751 DOI: https://doi.org/10.3905/jpm.2007.684751
Fama, E. F. (1965). The behavior of stock-market prices. The Journal of Business, 38(1), 34-105. DOI: https://doi.org/10.1086/294743
Febrianti, W., Sidarto, K. A. y Sumarti, N. (2022). Solving constrained mean-variance portfolio optimization problems using spiral optimization algorithm. International Journal of Financial Studies, 11(1), 1. https://doi.org/10.3390/ijfs11010001 DOI: https://doi.org/10.3390/ijfs11010001
Francis, J. y Kim, D. (2013). Modern portfolio theory foundations, analysis and new developments. In Wiley Finance Series (Vol. 4, Issue 1). John Wiley & Sons Ltd.
FRED Economic Data (2023). Market Yield on U.S. Treasury Securities at 1-Month Constant Maturity, Quoted on an Investment Basis. Federal Reserve Economic Data. https://fred.stlouisfed.org/series/dgs1mo
Gen, M. y Cheng, R. (2000). Genetic algorithms and engineering optimization. In Wiley-interscience. John Wiley & Sons Ltd.
Guijarro, F. (2018). A similarity measure for the cardinality constrained frontier in the mean-variance optimization model. Journal of the Operational Research Society, 69(6), 928-945. https://doi.org/10.1057/s41274-017-0276-6 DOI: https://doi.org/10.1057/s41274-017-0276-6
Guijarro, F. y Tsinaslanidis, P. E. (2021). A surrogate similarity measure for the mean-variance frontier optimisation problem under bound and cardinality constraints. Journal of the Operational Research Society, 72(3), 564-579. https://doi.org/10.1080/01605682.2019.1657367 DOI: https://doi.org/10.1080/01605682.2019.1657367
Haupt, R. L. y Haupt, S. E. (2004). Practical genetic algorithms. In Practical Genetic Algorithms. https://doi.org/10.1002/0471671746 DOI: https://doi.org/10.1002/0471671746
Holland, J. H. (1992). Adaptation in Natural and Artificial Systems. An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. MIT Press. DOI: https://doi.org/10.7551/mitpress/1090.001.0001
Jalota, H. y Thakur, M. (2018). Genetic algorithm designed for solving portfolio op-timization problems subjected to cardinality constraint. International Journal of System Assurance Engineering and Management, 9(1), 294-305. https://doi. org/10.1007/s13198-017-0574-z DOI: https://doi.org/10.1007/s13198-017-0574-z
Jimbo, H. C., Ngongo, I. S., Andjiga, N. G., Suzuki, T. y Onana, C. A. (2017). Portfolio optimization under cardinality constraints: A comparative study. Open Journal of Statistics, 07(04), 731-742. https://doi.org/10.4236/ojs.2017.74051 DOI: https://doi.org/10.4236/ojs.2017.74051
Kalayci, C. B., Polat, O. y Akbay, M. A. (2020). An efficient hybrid metaheuristic algorithm for cardinality constrained portfolio optimization. Swarm and Evolutionary Computation, 54, 100662. https://doi.org/10.1016/j.swevo.2020.100662 DOI: https://doi.org/10.1016/j.swevo.2020.100662
Kolusheva, D. (2008). Out of Sample Performance of Asset Allocation Strategies. SSRN Electronic Journal. DOI: https://doi.org/10.2139/ssrn.1802491
Konstantinou, C., Tzanetos, A. y Dounias, G. (2022). Cardinality constrained portfolio optimization with a hybrid scheme combining a Genetic Algorithm and Sonar Inspired Optimization. Operational Research, 22(3), 2465-2487. https://doi.org/10.1007/s12351-020-00614-1 DOI: https://doi.org/10.1007/s12351-020-00614-1
Kramer, O. (2017). Studies in Computational Intelligence 679 Genetic Algorithm Essentials. Springer-Berlin. DOI: https://doi.org/10.1007/978-3-319-52156-5
Leyffer, S. y Lee, J. (2012). Mixed Integer Nonlinear Programming, MINLP. In Springer Reference. https://doi.org/10.1007/springerreference_72472 DOI: https://doi.org/10.1007/SpringerReference_72472
Ling, S. H. y Leung, F. H. F. (2007). An improved genetic algorithm with average-bound crossover and wavelet mutation operations. Soft Computing, 11(1), 7-31. https://doi.org/10.1007/s00500-006-0049-7 DOI: https://doi.org/10.1007/s00500-006-0049-7
Loraschi, A., Tomassini, M., Tettamanzi, A. y Verda, P. (1995). Distributed genetic algo-rithms with an application to portfolio selection problems. Artificial Neural Nets and Genetic Algorithms (Conference paper), 384-387. https://doi.org/10.1007/978- 3-7091-7535-4_100 DOI: https://doi.org/10.1007/978-3-7091-7535-4_100
Maringer, D. G. (2005). Portfolio management with heuristic optimization. In Springer (Ed.), Portfolio Management with Heuristic Optimization (Vol. 00008). Springer. https://doi.org/10.1007/b136219 DOI: https://doi.org/10.1007/b136219
Markowitz, H. (1952). Portfolio Selection. Journal of Finance, 7(1), 77-91. https://doi. org/10.2307/2975974 DOI: https://doi.org/10.1111/j.1540-6261.1952.tb01525.x
Michalewicz, Z. (1996). Evolutionary algorithms for constrained parameter optimization problems. Evolutionary Computation, 4(1), 1-32. https://doi.org/10.1162/ evco.1996.4.1.1 DOI: https://doi.org/10.1162/evco.1996.4.1.1
Mitchell, M. (1999). An Introduction to Genetic Algorithms. The MIT press.
Moral-Escudero, R., Ruiz-Torrubiano, R. y Suárez, A. (2006). Selection of optimal inves-tment portfolios with cardinality constraints. 2006 IEEE Congress on Evolutionary Computation, CEC 2006, 2382-2388. https://doi.org/10.1109/cec.2006.1688603 DOI: https://doi.org/10.1109/CEC.2006.1688603
Ruiz-Torrubiano, R. y Suárez, A. (2010). Hybrid approaches and dimensionality reduction for portfolio selection with cardinality constraints. IEEE Computational Intelligence Magazine, 5(2), 92-107. https://doi.org/10.1109/mci.2010.936308 DOI: https://doi.org/10.1109/MCI.2010.936308
Ruiz-Torrubiano, R. y Suárez, A. (2015). A memetic algorithm for cardinality-constrained portfolio optimization with transaction costs. Applied Soft Computing Journal, 36, 125-142. https://doi.org/10.1016/j.asoc.2015.06.053 DOI: https://doi.org/10.1016/j.asoc.2015.06.053
Sabar, N. R. y Song, A. (2014). Dual population genetic algorithm for the cardinality constrained portfolio selection problem. In G. Dick, W. N. Browne, P. Whigham, M. Zhang, L. T. Bui, H. Ishibuchi, … K. Tang (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 8886, pp. 703-712). Springer International Publishing. https://doi.org/10.1007/978-3-319-13563-2_59 DOI: https://doi.org/10.1007/978-3-319-13563-2_59
Sabar, N. R., Turky, A., Leenders, M. y Song, A. (2018). Multi-population genetic al-gorithm for cardinality constrained portfolio selection problems. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10860 LNCS, 129-140. https://doi. org/10.1007/978-3-319-93698-7_10 DOI: https://doi.org/10.1007/978-3-319-93698-7_10
Sadjadi, S. J., Gharakhani, M. y Safari, E. (2012). Robust optimization framework for cardinality constrained portfolio problem. Applied Soft Computing Journal, 12(1), 91-99. https://doi.org/10.1016/j.asoc.2011.09.006 DOI: https://doi.org/10.1016/j.asoc.2011.09.006
Sinha, P., Chandwani, A. y Sinha, T. (2015). Algorithm of construction of optimum portfolio of stocks using genetic algorithm. International Journal of System Assurance Engineering and Management, 6(4), 447-465. https://doi.org/10.1007/s13198-014-0293-7 DOI: https://doi.org/10.1007/s13198-014-0293-7
Sivanandam, S. N. y Deepa, S. N. (2008a). Genetic Algorithms BT–Introduction to Genetic Algorithms (S. N. Sivanandam & S. N. Deepa, Eds, pp. 15-37). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-73190-0_2 DOI: https://doi.org/10.1007/978-3-540-73190-0_2
Sivanandam, S. N. y Deepa, S. N. (2008b). Introduction to Genetic Algorithms. Springer. https://doi.org/10.1007/978-3-540-73190-0 DOI: https://doi.org/10.1007/978-3-540-73190-0
Soleimani, H., Golmakani, H. R. y Salimi, M. H. (2009). Markowitz-based portfolio selection with minimum transaction lots, cardinality constraints and regarding sector capitalization using genetic algorithm. Expert Systems with Applications, 36(3 part 1), 5058-5063. https://doi.org/10.1016/j.eswa.2008.06.007 DOI: https://doi.org/10.1016/j.eswa.2008.06.007
Woodside-Oriakhi, M., Lucas, C. y Beasley, J. E. (2011). Heuristic algorithms for the cardinality constrained efficient frontier. European Journal of Operational Research, 213(3), 538-550. https://doi.org/10.1016/j.ejor.2011.03.030 DOI: https://doi.org/10.1016/j.ejor.2011.03.030
Yaman, I. y Erbay Dalkılıç, T. (2021). A hybrid approach to cardinality constraint portfolio selection problem based on nonlinear neural network and genetic algorithm. Expert Systems with Applications, 169(December 2020), 114517. https://doi.org/10.1016/j.eswa.2020.114517 DOI: https://doi.org/10.1016/j.eswa.2020.114517