El criterio de Kelly frente al modelo Markowitz: optimización de portafolio bajo una función no lineal desacoplada de riesgo y rentabilidad. Aplicación al caso colombiano

Kelly’s criterion versus the Markowitz model: Portfolio optimization under a decoupled nonlinear function of risk and return. Application to the Colombian case

Contenido principal del artículo

Resumen

Se presenta un análisis comparativo del proceso de optimización de portafolio utilizando el criterio de Kelly bajo una función no lineal desacoplada, es decir, cuando la función de rentabilidad para un portafolio de múltiples activos se de­fine como una función no lineal de la fracción del capital total que es asignado en cada inversión. Los elementos de comparación son los niveles de rentabi­lidad y riesgo en los dos portafolios (un portafolio obtenido por la aplicación del modelo de Markowitz frente a un portafolio aplicando el criterio de Kelly) en un horizonte de tiempo definido.

Palabras clave:

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Referencias (VER)

Bichpuriya, Y. K. y Soman, S. A. (2016). Application of probability density forecast of demand in short term portfolio optimization, en 2016 ieee International Conference on Power System Technology (Powercon), Australia. DOI: https://doi.org/10.1109/POWERCON.2016.7753987

Björk, T. (2009). Arbitrage theory in continuous time. Oxford University Press.

Bolsa de Valores de Colombia (2018). Documento Metodología colcap. Recuperado de www.bvc.com.co

Boudt, K., Ardia, D., Mullen, K. M. y Peterson, B. G. (2011). Large-scale portfolio optimization with DEoptim. Recuperado de https://cran.r-project.org/web/packa-ges/DEoptim/vignettes/DEoptimPortfolioOptimization.pdf.

Brealey, R. y Myers, S. (2008). Principles of corporate finance (9 ed.). McGraw-Hill.

Breiman, L. (1961). Optimal gambling system for favorable games. Proceedings of the 4th Berkeley Symposium on Mathematics, Statistics and Probability, 1, 63-68.

Browne, S. y Whitt, W. (1996). Portfolio choice and the Bayesian Kelly criterion. Advanced Applied Probability, 28, 1145-1176. DOI: https://doi.org/10.1017/S0001867800027592

Davis, M. Lleo, S. (2013). Fractional Kelly strategies in continuous time: Recent de-velopments, en Handbook of the fundamentals of financial decision making (Part 1 and 2, L. MacLean y W. T. Ziemba eds.). World Scientific Publishing. DOI: https://doi.org/10.1142/9789814417358_0037

Fabozzi, F. J., Kolm, P. N., Pachamanova, D. A. y Focardi, S. M. (2007). Robust port¬folio optimization and management. John Wiley & Sons Inc. DOI: https://doi.org/10.3905/jpm.2007.684751

Huynh, H. T., Lai, V. S. y Soumare, I. (2009). Stochastic simulation and applications in finance with matlab programs. John Wiley & Sons. DOI: https://doi.org/10.1002/9781118467374

Kelly, J. L. (1956). A new interpretation of information rate. Bell systems technical journal, 35, 917-926. DOI: https://doi.org/10.1002/j.1538-7305.1956.tb03809.x

Kim, G. y Jung, S. (2013). The Construction of the Optimal Investment Portfolio Using the Kelly Criterion. World 3.6.

Yingdong, L. y Meister, B. K. (2009). Application of the Kelly criterion to Ornstein- Uhlenbeck processes, en J. Zhou (ed.), Complex Sciences. Complex 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (vol. 4). Springer.

MacLean, L. C., Thorp, E. O. y Ziemba, W. T. (2010). Good and bad properties of the Kelly criterion. Risk, 20(2).

MacLean, L. C., et al. (2011). How does the fortune’s formula Kelly capital growth model perform? Journal of Portfolio Management, 37(4). DOI: https://doi.org/10.3905/jpm.2011.37.4.096

Markowitz, H. (1952). Portfolio selection. Journal of Finance. DOI: https://doi.org/10.2307/2975974

Markowitz, H. (1959). Portfolio selection: efficient diversification of investment. Wiley.

Markowitz, H. (1991). Foundations of portfolio theory. Journal of Finance. DOI: https://doi.org/10.1111/j.1540-6261.1991.tb02669.x

Merton, R. C. (1992). Continuos time finance. Blackwell Publishers.

Peterson, Z. (2017-2018). Kelly’s criterion in portfolio optimization: A decoupled problem. Adams State University. DOI: https://doi.org/10.20944/preprints201707.0090.v1

Pham, H. (2009). Continuos-time stochastic control and optimization with financial applications. Springer-Verlag. DOI: https://doi.org/10.1007/978-3-540-89500-8

Prigent, J. L. (2007). Portfolio optimization and performance analysis. Taylor & Francis Group. DOI: https://doi.org/10.1201/9781420010930

Rotando, L. M. Thorp, E. O. (1992). The Kelly criterion and the stock market. American Mathematical Monthly. DOI: https://doi.org/10.2307/2324484

Samuelson, P. A. (1971). The ‘fallacy’ of maximizing the G mean in long sequences of investing or gambling. Proceedings of the national academy of sciences, 68(10), 2493-2496. DOI: https://doi.org/10.1073/pnas.68.10.2493

Shonkwiler, R. W. (2013). Finance with montecarlo. Springer Science + Business Media.

Thorp, E. O. (2011). The Kelly criterion in blackjack sports betting, and the stock market. In The Kelly Capital Growth Investment Criterion: Theory and Practice (pp. 789-832). DOI: https://doi.org/10.1142/9789814293501_0054

Wesselhöfft, N. (2016). The Kelly criterion: Implementation, simulation and backtest (Master in statistic thesis) Humboldt Universität zu Berlin.

Wilmott, P. (2006). Paul Wilmott on Quantitative Finance (2 ed.). John Wiley & Sons. DOI: https://doi.org/10.1002/wilm.1

Yang, G. y Xinwang, L. (2016). A improved algorithm for fuzzy multistage portfolio optimization model. Paper presented at 2016 IEEE International Conference on Fuzzy Systems. Canada. DOI: https://doi.org/10.1109/FUZZ-IEEE.2016.7737881

Zaheer, H. y Pant, M. (2016). Solving portfolio optimization problem through differential evolution, en ieee iceeot proceedings. Paper presented at International Conference on Electrical, Electronics and Optimization Techniques (ICEEOT), Chennai, India DOI: https://doi.org/10.1109/ICEEOT.2016.7755462

Citado por