Aplicación del modelo contribución jerárquica de igual riesgo con ADR latinoamericanos
Application of the Hierarchical Equal Risk Contribution Model with Latin American ADRS
Contenido principal del artículo
Resumen
Se presenta el modelo contribución jerárquica de igual riesgo (HERC–Hierarchical Equal Risk Contribution) propuesto por Raffinot que, al igual que el modelo propuesto por López de Prado, incorpora técnicas de machine learning para la optimización de portafolios de inversión, evitando algunas limitaciones del algoritmo CLA del modelo tradicional Media-Varianza de Markowitz (1952). Se realiza una aplicación del modelo HERC considerando métodos de enlazamiento Single y Ward para la agrupación jerárquica de un conjunto de activos que cotizan en el NYSE y cuyas empresas están ubicadas en países latinoamericanos. Los resultados muestran que, para el caso de este conjunto de activos, la agrupación y jerarquización con el método de agrupamiento Ward se caracteriza por ser intrapaís, y muestra un número de clústeres más compacto frente al método de agrupamiento Single, así como mejores resultados en términos de rendimiento, volatilidad y coeficiente de Sharpe.
Palabras clave:
Descargas
Detalles del artículo
Referencias (VER)
Bailey, D. y M. López de Prado (2012). The Sharpe Coeficiente Efficient Frontier. Journal of Risk, 15(2), 3-44. doi: 10.21314/jor.2012.255.
Bechis, L. (2020). Machine learning portfolio optimization: hierarchical risk parity and modern portfolio theory (Tesis de maestría), Libera Università Internazionale degli Studi Sociali Guido Carli. http://tesi.luiss.it/28022/1/709261_bechis _ luca.pdf
Black, F. y Litterman, R. (1992). Global portfolio optimization. Financial Analysts Journal, 48(5), 28-43. doi: 10.2469/faj.v48.n5.28.
Clarke, R., De Silva, H. y Thorley, S. (2002). Portfolio constraints and the fundamental law of active management. Financial Analysts Journal, 58, 48-66. doi: 10.2469/ faj.v58.n5.2468.
Ledoit, O. y Wolf, M. (2004). A well-conditioned estimator for large-dimensional co-variance matrices. Journal of Multivariate Analysis, 88(2), 365-411. doi: 10.1016/ S0047-259X(03)00096-4.
León, D., Aragón, A., Sandoval, J., Hernández, G., Arévalo, A. y Niño, J. (2017). Clus-tering algorithms for risk-adjusted portfolio construction. Procedia Computer Science, 108, 1334-1343. doi: 10.1016/j.procs.2017.05.185
López de Prado, M. (2016). Building diversified portfolios that outperform out of sample. The Journal of Portfolio Management, 42(4), 59-69. doi: 10.3905/jpm.2016. 42.4.059
López de Prado, M. (2018). Advances in financial machine learning. John Wiley y Sons.
López de Prado, M. (2020). Machine learning for asset managers. Cambridge University Press. doi: 10.1017/9781108883658
Markowitz, H. (1952). Portfolio Selection. Journal of Finance, 7(1), 77-91.
Markowitz, H. (1959). Portfolio Selection: Efficient Diversification of Investments. Wiley.
Mercader, M. (2021). Hierarchical Risk Parity: portfolio optimization. Mathematics and Physics Engineering Final Project. Universitat Politécnica de Catalunya. https://upcommons.upc.edu/bitstream/handle/2117/350200/tfg.pdf?sequence=1&isAllowed=y
Michaud, R. O. y Michaud, R. (2007). Estimation error and portfolio optimization: A resampling solution. SSRN Electronic Journal. doi: 10.2139/ssrn.2658657
Raffinot, Th. (May 2017). Hierarchical clustering-based asset allocation. SSRN Electronic Journal. https://doi.org/10.3905/jpm.2018.44.2.089
Raffinot, Th. (August 23, 2018). The hierarchical equal risk contribution portfolio. SSRN Electronic Journal. http://dx.doi.org/10.2139/ssrn.3237540
Sharpe, W. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. journal of finance, 19(3), 425-442. doi: 10.1111/j.1540-6261.1964.tb02865.x
Tatsat, H., Puri, S. y Lookabaugh, B. (2020). Machine Learning and Data Science Blueprints for Finance. O’Reilly Media.
Tibshirani, R., Guenther, W. t Hastie, T. (2001). Estimating the number of clusters in a data set via the gap statistic. Journal of the Royal Statistical Society, Series B, 63, 411-423. doi: 10.1111/1467-9868.00293.