Do changes in the frequency of data affect the accuracy of estimation of the trend parameter in a jump diffusion process?

Do changes in the frequency of data affect the accuracy of estimation of the trend parameter in a jump diffusion process?

Main Article Content

Abstract

This paper explores the effect of the frequency of data on the accuracy (measure by variance) of the maximum likelihood estimator (MLE) of the trend parameter μ in a jump-diffusion process à la Press (1967). First, we consider the case without jumps (i.e., the geometric Brownian motion (GBM)) as a benchmark case to show that the frequency of data is irrelevant in this first setting. Then, we consider the case with jumps and highlight that things are different in this second situation. Specifically, the asymptotic variance of the MLE of the trend parameter turns out to be higher compared to the case without jumps. Nevertheless, we also prove that when sampling occurs infinitely often (i.e., high frequency) it is possible to obtain the same accuracy for the MLE of μ as for the GBM, given that for higher frequencies it is easier to “identify” price discontinuities (i.e., jumps) for this model. Mathematical proofs are performed under the assumption that the MLE of μ is estimated given the other parameters, but numerical (Montecarlo) simulations indicate that this is also the case even when all parameters are estimated together.

Keywords:

Downloads

Download data is not yet available.

Article Details

References (SEE)

Aıt-Sahalia, Y. (2004). Disentangling diffusion from jumps. Journal of Financial Economics, 74(3), 487-528. https://doi.org/10.1016/j.jfineco.2004.01.002 DOI: https://doi.org/10.1016/j.jfineco.2003.09.005

Ait-Sahalia, Y., Mykland, P. A., & Zhang, L. (2005). How often to sample a continuoustime process in the presence of market microstructure noise. The Review of Financial Studies, 18(2), 351-416. https://doi.org/10.1093/rfs/hhi016 DOI: https://doi.org/10.1093/rfs/hhi016

Ball, C. A., & Torous, W. N. (1983). A simplified jump process for common stock returns. Journal of Financial and Quantitative Analysis, 18(1), 53-65. https://doi.org/10.2307/2330710 DOI: https://doi.org/10.2307/2330804

Ball, C. A., & Torous, W. N. (1985). On jumps in common stock prices and their impact on call option pricing. The Journal of Finance, 40(1), 155-173. https://doi.org/10.1111/j.1540-6261.1985.tb04890.x DOI: https://doi.org/10.1111/j.1540-6261.1985.tb04942.x

Beckers, S. (1981). A note on estimating the parameters of the diffusion-jump model of stock returns. Journal of Financial and Quantitative Analysis, 16(1), 127-140. https://doi.org/10.2307/2330614 DOI: https://doi.org/10.2307/2330670

Chernov, M., Gallant, A. R., Ghysels, E., & Tauchen, G. (2003). Alternative models for stock price dynamics. Journal of Econometrics, 116(1-2), 225-257. https://doi.org/10.1016/S0304-4076(03)00151-4 DOI: https://doi.org/10.1016/S0304-4076(03)00108-8

Cont, R. (2001). Empirical properties of asset returns: stylized facts and statistical issues. Quantitative finance, 1(2), 223. https://doi.org/10.1080/713665670 DOI: https://doi.org/10.1080/713665670

Gloter, A., Loukianova, D. and Mai, H. (2016), Jump filtering and efficient drift estimation for Lévy-Driven SDE’S. Centre de Researche en Économie et Statisique. Série des Documents de Travail.

Härdle, W. K., & Simar, L. (2019). Applied multivariate statistical analysis. Springer Nature. DOI: https://doi.org/10.1007/978-3-030-26006-4

Honore, P. (1998). Pitfalls in estimating jump-diffusion models. Available at SSRN 61998. DOI: https://doi.org/10.2139/ssrn.61998

Kiefer, N. M. (1978). Discrete parameter variation: Efficient estimation of a switching regression model. Econometrica: Journal of the Econometric Society, 427-434. https://doi.org/10.2307/1912371 DOI: https://doi.org/10.2307/1913910

Mai, H. (2012). Drift estimation for jump diffusions: time-continuous and highfrequency observations (Doctoral dissertation, Humboldt Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II).

Mai, H. (2014). Efficient maximum likelihood estimation for Lévy-driven Ornstein– Uhlenbeck processes. Bernoulli, 20(2), 919-957. https://doi.org/10.3150/13-BEJ537 DOI: https://doi.org/10.3150/13-BEJ510

Moreno Trujillo, J. F. (2011). Estimación de parámetros en ecuaciones diferenciales estocásticas aplicadas a finanzas. ODEON, (6), 131-144. https://doi.org/

Phillips, P. C., & Yu, J. (2009). Maximum likelihood and Gaussian estimation of continuous time models in finance. In Handbook of Financial Time series (pp. 497-530). Springer. DOI: https://doi.org/10.1007/978-3-540-71297-8_22

Press, S. J. (1967). A compound events model for security prices. Journal of Business, 40(3), 317-335. https://doi.org/10.1086/295117 DOI: https://doi.org/10.1086/294980

Citado por