Application of the Hierarchical Equal Risk Contribution Model with Latin American ADRS

Aplicación del modelo contribución jerárquica de igual riesgo con ADR latinoamericanos

Main Article Content

Abstract

The Hierarchical Equal Risk Contribution (HERC) approach, as proposed by Raffinot (2017, 2018), is introduced here. Similar to the model proposed by López de Prado (2016), it incorporates machine learning techniques for port­folio optimization, addressing certain limitations of the Mean-Variance model by Markowitz (1952). An application of the HERC model is conducted, consid­ering Single and Ward linkage methods for hierarchical clustering of a set of assets traded on the NYSE, with companies located in Latin American countries. The results indicate that, for this set of assets, the Ward clustering and hierarchy method is characterized by being intra-country, resulting in a more compact number of clusters compared to the Single clustering method. Additionally, it demonstrates better performance, lower volatility, and a higher Sharpe ratio.

Keywords:

Downloads

Download data is not yet available.

Article Details

References (SEE)

Bailey, D. y M. López de Prado (2012). The Sharpe Coeficiente Efficient Frontier. Journal of Risk, 15(2), 3-44. doi: 10.21314/jor.2012.255. DOI: https://doi.org/10.21314/JOR.2012.255

Bechis, L. (2020). Machine learning portfolio optimization: hierarchical risk parity and modern portfolio theory (Tesis de maestría), Libera Università Internazionale degli Studi Sociali Guido Carli. http://tesi.luiss.it/28022/1/709261_bechis _ luca.pdf

Black, F. y Litterman, R. (1992). Global portfolio optimization. Financial Analysts Journal, 48(5), 28-43. doi: 10.2469/faj.v48.n5.28. DOI: https://doi.org/10.2469/faj.v48.n5.28

Clarke, R., De Silva, H. y Thorley, S. (2002). Portfolio constraints and the fundamental law of active management. Financial Analysts Journal, 58, 48-66. doi: 10.2469/ faj.v58.n5.2468. DOI: https://doi.org/10.2469/faj.v58.n5.2468

Ledoit, O. y Wolf, M. (2004). A well-conditioned estimator for large-dimensional co-variance matrices. Journal of Multivariate Analysis, 88(2), 365-411. doi: 10.1016/ S0047-259X(03)00096-4. DOI: https://doi.org/10.1016/S0047-259X(03)00096-4

León, D., Aragón, A., Sandoval, J., Hernández, G., Arévalo, A. y Niño, J. (2017). Clus-tering algorithms for risk-adjusted portfolio construction. Procedia Computer Science, 108, 1334-1343. doi: 10.1016/j.procs.2017.05.185 DOI: https://doi.org/10.1016/j.procs.2017.05.185

López de Prado, M. (2016). Building diversified portfolios that outperform out of sample. The Journal of Portfolio Management, 42(4), 59-69. doi: 10.3905/jpm.2016. 42.4.059 DOI: https://doi.org/10.3905/jpm.2016.42.4.059

López de Prado, M. (2018). Advances in financial machine learning. John Wiley y Sons. DOI: https://doi.org/10.2139/ssrn.3365271

López de Prado, M. (2020). Machine learning for asset managers. Cambridge University Press. doi: 10.1017/9781108883658 DOI: https://doi.org/10.1017/9781108883658

Markowitz, H. (1952). Portfolio Selection. Journal of Finance, 7(1), 77-91. DOI: https://doi.org/10.1111/j.1540-6261.1952.tb01525.x

Markowitz, H. (1959). Portfolio Selection: Efficient Diversification of Investments. Wiley.

Mercader, M. (2021). Hierarchical Risk Parity: portfolio optimization. Mathematics and Physics Engineering Final Project. Universitat Politécnica de Catalunya. https://upcommons.upc.edu/bitstream/handle/2117/350200/tfg.pdf?sequence=1&isAllowed=y

Michaud, R. O. y Michaud, R. (2007). Estimation error and portfolio optimization: A resampling solution. SSRN Electronic Journal. doi: 10.2139/ssrn.2658657 DOI: https://doi.org/10.2139/ssrn.2658657

Raffinot, Th. (May 2017). Hierarchical clustering-based asset allocation. SSRN Electronic Journal. https://doi.org/10.3905/jpm.2018.44.2.089 DOI: https://doi.org/10.2139/ssrn.2840729

Raffinot, Th. (August 23, 2018). The hierarchical equal risk contribution portfolio. SSRN Electronic Journal. http://dx.doi.org/10.2139/ssrn.3237540 DOI: https://doi.org/10.2139/ssrn.3237540

Sharpe, W. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. journal of finance, 19(3), 425-442. doi: 10.1111/j.1540-6261.1964.tb02865.x DOI: https://doi.org/10.1111/j.1540-6261.1964.tb02865.x

Tatsat, H., Puri, S. y Lookabaugh, B. (2020). Machine Learning and Data Science Blueprints for Finance. O’Reilly Media.

Tibshirani, R., Guenther, W. t Hastie, T. (2001). Estimating the number of clusters in a data set via the gap statistic. Journal of the Royal Statistical Society, Series B, 63, 411-423. doi: 10.1111/1467-9868.00293. DOI: https://doi.org/10.1111/1467-9868.00293

Citado por