Probabilidad e incertidumbre en Keynes. Una revisión de tipo bayesiano

Main Article Content

Autores

Juan Esteban Jacobo
https://orcid.org/0000-0001-7078-0266

Resumen

Este articulo analiza el concepto de probabilidad en la obra de Keynes y propone un metodo para formalizar la nocion de la incertidumbre en la Teoría general utilizando el teorema de Bayes y el principio de maxima entropia. Una de las principales conclusiones es que, a pesar de compartir su rechazo del enfoque frecuentista de la estadistica, es poco razonable pensar que no se pueden determinar probabilidades numericas, aunque se cumpla algun criterio de objetividad.

Palabras clave:

JEL:

B16, B31, C11

Article Details

Licencia

Creative Commons License
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.

Referencias

Bateman, B. (1987). Keynes’s changing conception of probability. Economics and Philosophy, 3(1), 97-119.
Bauwens, L., Lubrano, M. y Richard, J.-F. (2000). Bayesian inference in dynamic econometric models. Oxford: Oxford University Press.
Carabelli, A. (1988). On Keynes’s method. Nueva York: Palgrave Macmillan.
Cover, T. y Thomas, J. (2006). Elements of information theory. Hoboken: Wiley & Sons.
Cox, R. (1961). The algebra of probable inference. Baltimore: The John Hopkins Press.
Feduzi, A. (2007). On the relationship between Keynes’s conception of evidential weight and the Ellsberg Paradox. Journal of Economic Psychology, 28(5), 545-565.
Feduzi, A., Runde, J. y Zappia, C. (2013). De Finetti on Uncertainty. Cambridge Journal of Economics, 38(1), 1-21.
Jaynes, E. (1957). Information theory and statistical mechanics. The Physical Review, 106(4), 620-630.
Jaynes, E. (2003). Probability theory: The logic of science. Cambridge: Cambridge University Press.
Keynes, J. M. (1921). A treatise on probability. En E. Johnson y D. Moggridge (eds.), The collected writings of John Maynard Keynes, v. VIII. Cambridge: Cambridge University Press for the Royal Society.
Keynes, J. M. (1933). Essays in biography En E. Johnson y D. Moggridge (eds.), The collected writings of John Maynard Keynes, v. X. Cambridge: Cambridge University Press for the Royal Society.
Keynes, J. M. (1936). The general theory. En E. Johnson y D. Moggridge (eds.), The collected writings of John Maynard Keynes (vol. VII). Cambridge: Cambridge University Press for the Royal Society.
Keynes, J. M. (1973). The general theory and after: Part II. Defence and development. En E. Johnson y D. Moggridge (eds.), The collected writings of John Maynard Keynes, v. XIV. Cambridge: Cambridge University Press for the Royal Society.
Lindley, D. (1987). Using expert advice on a skew judgmental distribution. Operations Research, 35(5), 716-721.
Lindley, D. (2000). The philosophy of statistics. Journal of the Royal Society. Series D, 49(3), 293-337.
O’Donnel, R. (1989). Keynes: Philosophy, economics and politics. Nueva York: Palgrave Macmillan.
Patinkin, D. (1976). Keynes and econometrics: On the interaction between the macroeconomic revolutions of the interwar period. Econometrica, 44(6), 1091-1123.
Ramsey, F. (1960). Truth and probability [1926]. En R. Braithwaite, The foundations of mathematics and other logical essays. Londres: Littlefield, Adams & Co.
Roncaglia, A. (2009). Keynes and probability: An assessment. The European Journal of the History of Economic Thought, 16(3), 489-510.
Samuelson, P. (1946). Lord Keynes and the General Theory. Econometrica, 14(3), 187-200.
Zellner, A. (1971). An introduction to Bayesian inference in econometrics. Nueva York: Wiley.
Zellner, A. (1991). Bayesian methods and entropy in economics and econometrics. En W. Grandy e I. Shick, Maximum entropy and Bayesian methods. Fundamental theories of physics. Dordrecht: Springer.

Descargas

La descarga de datos todavía no está disponible.