Reconstructing Algorithmic Trading in the Age of Generative AI: Implications for Market Structure, Regulation, and Epistemology

Reconstructing Algorithmic Trading in the Age of Generative AI: Implications for Market Structure, Regulation, and Epistemology

Contenido principal del artículo

Resumen

El propósito de este artículo es analizar cómo la Inteligencia Artificial Generativa (Gen AI), definida aquí como sistemas capaces de producir resultados novedosos, como texto, código o datos, mediante aprendizaje automático, está transformando el trading algorítmico. Gen AI mejora la eficiencia computacional, pero también reconfigura los fundamentos epistemológicos (teorías del conocimiento), institucionales (estructuras y actores de mercado) y regulatorios (normas y supervisión) de los mercados financieros. Sostenemos que Gen AI marca un cambio desde el precio entendido como representación de los fundamentos económicos hacia el precio como resultado recursivo de la simulación entre máquinas. Basándonos en aprendizajes del machine learning financiero, la teoría legal crítica, la economía política y la sociología de las finanzas, estudiamos cómo los modelos generativos, como las arquitecturas tipo transformer (modelos de deep learning desarrollados inicialmente para el procesamiento de lenguaje natural) y los motores de datos sintéticos (herramientas que generan conjuntos de datos artificiales) reconfiguran la lógica de la formación de precios, la provisión de liquidez y la gestión del riesgo. Nuestro análisis muestra que Gen AI intensifica la abstracción del mercado, debilita los supuestos regulatorios tradicionales y consolida el poder informativo en una élite reducida de actores tecnológicamente sofisticados. Además, arroja luz sobre la opacidad epistémica, los bucles de retroalimentación y la reflexividad algorítmica. Estas características comprometen tanto la inteligibilidad del mercado como la legitimidad regulatoria. También prestamos especial atención a cómo estas dinámicas agravan las desigualdades globales, lo cual ocurre a través de asimetrías de infraestructura y la importación de marcos regulatorios que marginan al sur global. Concluimos instando a la implementación de nuevas regulaciones que prioricen la claridad, la rendición de cuentas y el control digital. Sugerimos reformas, como registros públicos de modelos, auditorías participativas y una infraestructura algorítmica abierta para restaurar la supervisión democrática en mercados cada vez más gobernados por el código. Nuestro objetivo es reposicionar el trading algorítmico como un espacio central para el debate sobre el valor, la gobernanza y la realidad económica en las finanzas sintéticas.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Referencias / Ver

Aiba, Y.; Hatano, N.; Takayasu, H.; Marumo, K., and Shimizu, T. “Triangular Arbitrage as an Interaction among Foreign Exchange Rates.” Physica A: Statistical Mechanics and its Applications 310, n.º 3-4, 2002, pp. 467-79. https://doi.org/10.1016/S0378-4371(02)00799-9. DOI: https://doi.org/10.1016/S0378-4371(02)00799-9

Aizenberg, I. N.; Aizenberg, N. N., & Vandewalle, J. Multi-valued and Universal Binary Neurons, Berlin, Springer, 2001. DOI: https://doi.org/10.1007/978-1-4757-3115-6

Aldridge, Irene. High-Frequency Trading: A Practical Guide to Algorithmic Strategies and Trading Systems. 2nd ed. Hoboken, NJ, Wiley, 2013. DOI: https://doi.org/10.1002/9781119203803

Amoore, Louise, & Volha Piotukh, eds. Algorithmic Life: Calculative Devices in the Age of Big Data. London, Routledge, 2016. DOI: https://doi.org/10.4324/9781315723242

Anagnostopoulos, Ioannis. “Fintech and Regtech: Impact on Regulators and Banks.” Journal of Economics and Business 100, 2018, pp. 7-25. https://ideas.repec.org/a/eee/jebusi/v100y2018icp7-25.html. DOI: https://doi.org/10.1016/j.jeconbus.2018.07.003

Ananny, Mike, & Kate Crawford. “Seeing without Knowing: Limitations of the Transparency Ideal and Its Application to Algorithmic Accountability.” New Media & Society 20, n.º 3, 2018, pp. 973-989. DOI: https://doi.org/10.1177/1461444816676645

Angel, James J., Lawrence Harris, and Chester S. Spatt. “Equity Trading in the 21st Century.” Marshall School of Business Working Paper n.º FBE 09-10, 2010. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1584026. DOI: https://doi.org/10.2139/ssrn.1584026

Arner, Douglas W., Janos Barberis, & Ross P. Buckley. “The Evolution of Fintech: A New Post-Crisis Paradigm?” Georgetown Journal of International Law 47, n.º 4, 2016, pp.1.271-1.319.

Arnuk, Sal, & Joseph Saluzzi. Broken Markets: How High Frequency Trading and Predatory Practices on Wall Street Are Destroying Investor Confidence and Your Portfolio. Upper Saddle River, NJ, FT Press, 2012.

Athey, Susan. “Beyond Prediction: Using Big Data for Policy Problems.” Science 355, n.º 6324, 2017, pp. 483-485. https://doi.org/10.1126/science.aal4321. DOI: https://doi.org/10.1126/science.aal4321

Barbopoulos, Leonidas G., Rui Dai, Talis J. Putniņš, & Anthony Saunders. “Market Efficiency in the Age of Machine Learning.” Forthcoming.

Barocas, Solon, Moritz Hardt, & Arvind Narayanan. Fairness and Machine Learning. Cambridge, MA, MIT Press, 2023. https://mitpress.mit.edu/9780262048613/fairness-and-machine-learning/.

Baudrillard, Jean. Simulacra and Simulation. Translated by Sheila Faria Glaser. Ann Arbor, University of Michigan Press, 1994. DOI: https://doi.org/10.3998/mpub.9904

Birhane, Abeba, Pratyusha Kalluri, Dallas Card, William Agnew, Ravit Dotan, & Shakir Mohamed. “The Values Encoded in Machine Learning Research.” In Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency, FAccT ‘22, pp. 173-184. 2022. https://facctconference.org/static/pdfs_2022/facct22-3533083.pdf. DOI: https://doi.org/10.1145/3531146.3533083

Black, Bernard S. “Is Corporate Law Trivial? A Political and Economic Analysis.” Northwestern University Law Review 84, n.º 2, 1990, pp. 542-597.

Boldyrev, Ivan, & Ekaterina Svetlova. “After the Turn: How the Performativity of Economics Matters.” In Enacting Dismal Science: New Perspectives on the Performativity of Economics, 2016, p. 127. DOI: https://doi.org/10.1057/978-1-137-48876-3_1

Bommasani, Rishi, Drew A. Hudson, Ehsan Adeli, Russ Altman, Sanjeev Arora, et al. “On the Opportunities and Risks of Foundation Models.” arXiv preprint, 2021. https://arxiv.org/pdf/2108.07258.

Brogaard, Jonathan, Terrence Hendershott, and Ryan Riordan. “High-Frequency Trading and Price Discovery.” Review of Financial Studies 27, n.º 8, 2014, pp. 2.267-2.306. https://doi.org/10.1093/rfs/hhu032. DOI: https://doi.org/10.1093/rfs/hhu032

Budish, Eric, Peter Cramton, & John Shim. “The High-Frequency Trading Arms Race: Frequent Batch Auctions as a Market Design Response.” Quarterly Journal of Economics 130, n.º 4, 2015, pp. 1.547-1.621. DOI: https://doi.org/10.1093/qje/qjv027

Burrell, Jenna. “How the Machine ‘Thinks’: Understanding Opacity in Machine Learning Algorithms.” Big Data & Society 3, n.º 1, 2016, pp. 1 12. https://doi.org/10.1177/2053951715622512. DOI: https://doi.org/10.1177/2053951715622512

Butler, Judith. Gender Trouble: Feminism and the Subversion of Identity. New York: Routledge, 1990.

Cartea, Álvaro, Sebastian Jaimungal, & José Penalva. Algorithmic and High-Frequency Trading. Cambridge: Cambridge University Press, 2015.

Cath, Corinne, Sandra Wachter, Brent Mittelstadt, Mariarosaria Taddeo, & Luciano Floridi. “Artificial Intelligence and the ‘Good Society’: The US, EU, and UK Approach.” Science and Engineering Ethics 24, n.º 2, 2018, pp. 505-528. https://doi.org/10.1007/s11948-017-9901-7. DOI: https://doi.org/10.1007/s11948-017-9901-7

CEPAL. Superar las trampas del desarrollo de América Latina y el Caribe en la era digital: el potencial transformador de las tecnologías digitales y la inteligencia artificial. Santiago: Comisión Económica para América Latina y el Caribe, 2025.

Chordia, Tarun, Richard Roll, & Avanidhar Subrahmanyam. “Recent Trends in Trading Activity and Market Quality.” Journal of Financial Economics 101, n.º 2, 2011, pp. 243-263. https://doi.org/10.1016/j.jfineco.2011.03.001. DOI: https://doi.org/10.1016/j.jfineco.2011.03.008

Christophers, Brett. The Great Leveler: Capitalism and Competition in the Court of Law. Cambridge, MA: Harvard University Press, 2016. DOI: https://doi.org/10.4159/9780674089020

Citron, Danielle Keats, & Frank Pasquale. “The Scored Society: Due Process for Automated Predictions.” Washington Law Review 89, n.º 1, 2014, pp.1-33.

Couldry, Nick, & Ulises A. Mejias. The Costs of Connection: How Data is Colonizing Human Life and Appropriating It for Capitalism. Stanford, CA: Stanford University Press, 2019. DOI: https://doi.org/10.1515/9781503609754

Danielsson, Jon, Richard Macrae, & Andreas Utheman. “Artificial Intelligence and Systemic Risk.” Systemic Risk Centre Special Papers SP 16, 2019. DOI: https://doi.org/10.2139/ssrn.3410948

De Gooijer, Jan G., & Rob J. Hyndman. “25 Years of Time Series Forecasting.” International Journal of Forecasting 22, n.º 3, 2006, pp. 443-473. https://doi.org/10.1016/j.ijforecast.2006.01.001. DOI: https://doi.org/10.1016/j.ijforecast.2006.01.001

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, & Kristina Toutanova. “BERT: Pretraining of Deep Bidirectional Transformers for Language Understanding.” In NAACL-HLT 2019, pp. 4.171-4.186.

DNP. Colombia’s AI Ethics Framework. Bogotá: Departamento Nacional de Planeación, 2024. https://sisconpes.dnp.gov.co/SisCONPESWeb/ctmp/Borrador_Documento_CONPESIA_comentarios_ciudadanía.pdf.

Easley, David, Marcos M. Lopez de Prado, & Maureen O’Hara. “The Microstructure of the ‘Flash Crash’: Flow Toxicity, Liquidity Crashes, and the Probability of Informed Trading.” Journal of Portfolio Management 47, n.º 2, 2011, pp.118-134. DOI: https://doi.org/10.3905/jpm.2011.37.2.118

Epstein, Gerald A., ed. Financialization and the World Economy. Cheltenham, UK, Edward Elgar Publishing, 2005. DOI: https://doi.org/10.4337/9781781008263.00009

Eubanks, Virginia. Automating Inequality: How High-Tech Tools Profile, Police, and Punish the Poor. New York: St. Martin’s Press, 2018.

Fama, Eugene F. “Efficient Capital Markets: A Review of Theory and Empirical Work.” Journal of Finance 25, n.º 2, 1970, pp. 383-417. DOI: https://doi.org/10.1111/j.1540-6261.1970.tb00518.x

Fedesarrollo. Panorama de la innovación fintech en Colombia. Bogotá: Fedesarrollo, 2022.

Frino, Alex, Michael Garcia, & Zhaoyun Zhou. “Impact of Algorithmic Trading on Speed of Adjustment to New Information: Evidence from Interest Rate Derivatives.” Journal of Futures Markets 40, n.º 5, 2020, pp. 749-760. https://doi.org/10.1002/fut.22104. DOI: https://doi.org/10.1002/fut.22104

Frino, Alex, Valerio Mollica, & Robert Webb. “The Impact of Co-Location of Securities Exchanges’ and Traders’ Computer Servers on Market Liquidity.” Journal of Futures Markets 34, n.º 1, 2014. https://doi.org/10.1002/fut.21631. DOI: https://doi.org/10.1002/fut.21631

Gambaro, Marco. “Big Data Competition and Market Power.” Market & Competition Law Review 2, 2018, p. 99. DOI: https://doi.org/10.7559/mclawreview.2018.326

GAO. Securities and Exchange Commission: Technology Modernization Needs and Challenges. Washington, DC: U.S. Government Accountability Office, 2023. https://www.gao.gov/assets/gao-23-106419.pdf.

Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, et al. “Generative Adversarial Nets.” In Advances in Neural Information Processing Systems, 2672-2680. 2014. https://arxiv.org/pdf/1406.2661.

Gu, Shihao, Bryan Kelly, & Dacheng Xiu. “Empirical Asset Pricing via Machine Learning.” Review of Financial Studies 33, n.º 5, 2020, pp. 2.223-2.273. https://doi.org/10.1093/rfs/hhaa009. DOI: https://doi.org/10.1093/rfs/hhaa009

Hardie, Iain, & Donald Mackenzie. “Assembling an Economic Actor: The Agencement of a Hedge Fund.” The Sociological Review 55, n.º 1, 2007, pp. 57-80. https://doi.org/10.1111/j.1467-954X.2007.00682.x. DOI: https://doi.org/10.1111/j.1467-954X.2007.00682.x

Hasbrouck, Joel, & Gideon Saar. “Low-Latency Trading.” Journal of Financial Markets 16, n.º 4, 2013, pp. 646-679. https://doi.org/10.1016/j.finmar.2013.05.003. DOI: https://doi.org/10.1016/j.finmar.2013.05.003

Hayek, Friedrich A. “The Use of Knowledge in Society.” The American Economic Review 35, n.º 4, 1945, pp. 519-530.

Hendershott, Joel, & Ryan Riordan. “Algorithmic Trading and the Market for Liquidity.” Journal of Financial and Quantitative Analysis (JFQA), forthcoming. April 11, 2012. https://ssrn.com/abstract=2001912 or http://dx.doi.org/10.2139/ssrn.2001912. DOI: https://doi.org/10.2139/ssrn.2001912

Hendershott, Terrence, & Ryan Riordan. “Algorithmic Trading and Information.” 2009. https://pages.stern.nyu.edu/~bakos/wise/papers/wise2009-3b2_paper.pdf.

Hendershott, Terrence, Charles M. Jones, & Albert J. Menkveld. “Does Algorithmic Trading Improve Liquidity?” Journal of Finance 66, n.º 1, 2011, pp. 1–33. https://doi.org/10.1111/j.1540-6261.2010.01624.x. DOI: https://doi.org/10.1111/j.1540-6261.2010.01624.x

Hildebrandt, Mireille. Smart Technologies and the End(s) of Law: Novel Entanglements of Law and Technology. Cheltenham, UK: Edward Elgar Publishing, 2016. DOI: https://doi.org/10.4337/9781849808774.00016

Johnson, Simon, & James Kwak. 13 Bankers: The Wall Street Takeover and the Next Financial Meltdown. New York, Pantheon Books, 2010.

Jorion, Philippe. Value at Risk: The New Benchmark for Managing Financial Risk. 3rd ed. New York, McGraw-Hill, 2006.

Kingma, Diederik P., & Max Welling. “Auto-Encoding Variational Bayes.” Proceedings of the International Conference on Learning Representations (ICLR), 2014. https://arxiv.org/pdf/1312.6114.

Kirilenko, Andrei A., Albert S. Kyle, Mehrdad Samadi, & Tugkan Tuzun. “The Flash Crash: High-Frequency Trading in an Electronic Market.” Journal of Finance 72, n.º 3, 2017, pp. 967-998. DOI: https://doi.org/10.1111/jofi.12498

Kolanovic, Marko, & Rajiv Smith. Big Data and AI Strategies 2019 Alternative Data Handbook. J.P. Morgan Global Quantitative and Derivatives Strategy, 2019. https://eapdf-items.s3-eu-west-1.amazonaws.com/J.P.-Morgan-Alternative-Data-Handbook-2019.pdf.

Krishnamachari, Ramesh. Big Data and AI Strategies: Machine Learning and Alternative Data Approach to Investing. J.P. Morgan Global Quantitative and Derivatives Strategy Report, 2017.

Kroll, Joshua A., Joanna Huey, Solon Barocas, Edward W. Felten, Joel R. Reidenberg, David G. Robinson, & Harlan Yu. “Accountable Algorithms.” University of Pennsylvania Law Review 165, n.º 3, 2016, pp. 633-706.

Langley, Paul, & Andrew Leyshon. “Capitalizing on the Crowd: The Monetary and Financial Ecologies of Crowdfunding.” Environment and Planning A: Economy and Space 49, n.º 5, 2017, pp. 1.019-1.039. https://doi.org/10.1177/0308518X16687534. DOI: https://doi.org/10.1177/0308518X16687556

Langley, Paul, & Andrew Leyshon. “Platform Capitalism: The Intermediation and Capitalisation of Digital Economic Circulation.” Finance and Society 3, n.º 1, 2017, pp. 11-31. DOI: https://doi.org/10.2218/finsoc.v3i1.1936

Lanier, Jaron, & E. Glen Weyl. “A Blueprint for a Better Digital Society.” Harvard Business Review, September 2018. https://hbr.org/2018/09/a-blueprint-for-abetter-digital-society.

Lash, Scott. “Power after Hegemony: Cultural Studies in Mutation?” Theory, Culture & Society 24, n.º 3, 2007, pp. 55-78. https://doi.org/10.1177/0263276407075956. DOI: https://doi.org/10.1177/0263276407075956

Lee, Ruben. Running the World’s Markets: The Governance of Financial Infrastructure. Princeton, NJ: Princeton University Press, 2011. DOI: https://doi.org/10.23943/princeton/9780691133539.001.0001

Leinweber, David J. “Stupid Data Miner Tricks: Overfitting in Quantitative Discovery.” The Journal of Investing 16, n.º 1, 2007, pp. 15-22. https://doi.org/10.3905/joi.2007.681820. DOI: https://doi.org/10.3905/joi.2007.681820

Lewis, Michael. Flash Boys: A Wall Street Revolt. New York, W. W. Norton & Company, 2015.

Liu, Jiang, Yingjie Zhang, & Weinan Zhang. “FinRL: Deep Reinforcement Learning Framework to Automate Trading in Quantitative Finance.” ACM Transactions on Management Information Systems (TMIS) 13, n.º 1, 2021, pp. 1-36. https://openfin.engineering.columbia.edu/sites/default/files/content/publications/3490354.3494366.pdf. DOI: https://doi.org/10.1145/3490354.3494366

Lopez de Prado, Marcos. Advances in Financial Machine Learning. Hoboken, NJ, Wiley, 2018. Mackenzie, Donald. Trading at the Speed of Light: How Ultrafast Algorithms Are Transforming Financial Markets. Princeton, NJ, Princeton University Press, 2021.

Martínez, S. A. “Retos del sistema financiero colombiano en la Cuarta Revolución Industrial.” Semestre Económico 24, n.º 56, 2021, pp. 253-270. DOI: https://doi.org/10.22395/seec.v24n56a11

Menkveld, Albert J. “High-Frequency Trading and the New Market Makers.” Journal of Financial Markets 16, n.º 4, 2013, pp. 712-740. DOI: https://doi.org/10.1016/j.finmar.2013.06.006

Mirowski, Philip, & Dieter Plehwe. The Road from Mont Pèlerin: The Making of the Neoliberal Thought Collective. Cambridge, MA, Harvard University Press, 2009. DOI: https://doi.org/10.4159/9780674054264

Mökander, Johan. “Auditing of AI: Legal, Ethical and Technical Approaches.” Digital Society 2, n.º 3, 2023, pp. 49. DOI: https://doi.org/10.1007/s44206-023-00074-y

Ng, Andrew, & Michael Jordan. “On Discriminative vs. Generative Classifiers: A Comparison of Logistic Regression and Naive Bayes.” Advances in Neural Information Processing Systems 14, 2001.

O’Neil, Cathy. Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy. New York, Crown, 2017.

OECD. Digital Disruption in Banking and its Impact on Competition. Paris, OECD, 2020. https://www.oecd.org/content/dam/oecd/en/publications/reports/2020/02/digital-disruption-in-banking-and-its-impact-on-competition_330c7176/b8d8fcb1-en.pdf.

Pan, Mingqiang, Danyang Li, Hong Wu, & Ping Lei. “Technological Revolution and Regulatory Innovation: How Governmental Artificial Intelligence Adoption Matters for Financial Regulation Intensity.” International Review of Financial Analysis 96, 2024, p. 103535. DOI: https://doi.org/10.1016/j.irfa.2024.103535

Pasquale, Frank. The Black Box Society: The Secret Algorithms That Control Money and Information. Cambridge, MA, Harvard University Press, 2015. DOI: https://doi.org/10.4159/harvard.9780674736061

Pasquale, Frank. New Laws of Robotics: Defending Human Expertise in the Age of AI. New York: Blackstone Publishing, 2021. DOI: https://doi.org/10.2307/j.ctv3405w6p

Pattanyak, S. K. “Generative AI and Its Role in Shaping the Future of Risk Management in the Banking Industry.” 2023.

Patterson, Scott. The Quants: How a New Breed of Math Whizzes Conquered Wall Street and Nearly Destroyed It. New York, Crown Currency, 2011.

Patterson, Scott. Dark Pools: High-Speed Traders, A.I. Bandits, and the Threat to the Global Financial System. New York: Crown Publishing, 2012.

Pentland, Alex. Social Physics: How Good Ideas Spread– The Lessons from a New Science. New York, Penguin Press, 2014.

Pistor, Katharina. The Code of Capital: How the Law Creates Wealth and Inequality. Princeton, NJ, Princeton University Press, 2019. DOI: https://doi.org/10.1515/9780691189437

Prainsack, Barbara. “The Political Economy of Digital Data: Introduction to the Special Issue.” Policy Studies 41, n.º 5, 2020, pp. 439-446. https://ideas.repec.org/a/taf/cposxx/v41y2020i5p439-446.html. DOI: https://doi.org/10.1080/01442872.2020.1723519

Radford, Alec; Karthik Narasimhan, Tim Salimans, & Ilya Sutskever. “Improving Language Understanding by Generative Pre-Training.” OpenAI, 2018. https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf.

Rajagopal, Balakrishnan. International Law from Below: Development, Social Movements and Third World Resistance. Cambridge, Cambridge University Press, 2009.

Rampini, Adriano, S. Viswanathan, & Guillaume Vuillemey. “Risk Management in Financial Institutions.” The Journal of Finance 75, n.º 2, 2020, pp. 591-637. DOI: https://doi.org/10.1111/jofi.12868

Riles, Annelise. Collateral Knowledge: Legal Reasoning in the Global Financial Markets. Chicago: University of Chicago Press, 2011. DOI: https://doi.org/10.7208/chicago/9780226719344.001.0001

Rousseau, Frédéric, Hervé Boco, and Laurent Germain. “High Frequency Trading: Strategic Competition Between Slow and Fast Traders.” Economics Department Working Paper Series n296-20, Department of Economics, National University of Ireland – Maynooth, 2020. https://ideas.repec.org/p/may/mayecw/n296-20.pdf.html.

Rouvroy, Antoinette, & Thomas Berns. “Gouvernementalité algorithmique et perspectives d’émancipation.” Réseaux 177, n.º 1, 2013, pp. 163-196. DOI: https://doi.org/10.3917/res.177.0163

Snider, Laureen. “Interrogating the Algorithm: Debt, Derivatives and the Social Reconstruction of Stock Market Trading.” Critical Sociology 40, n.º 5, 2014, pp. 747-761. https://doi.org/10.1177/0896920513504603. DOI: https://doi.org/10.1177/0896920513504603

Soros, George. The Alchemy of Finance: Reading the Mind of the Market. New York: Simon & Schuster, 1987.

U.S. Commodity Futures Trading Commission (CFTC) and Securities and Exchange Commission, SEC). Findings Regarding the Market Events of May 6, 2010. Washington, DC: U.S. Securities and Exchange Commission, 2010. https://www.sec.gov/news/studies/2010/marketevents-report.pdf.

Veale, Michael, & Lilian Edwards. “Clarity, Surprises, and Further Questions in the Article 29 Working Party Draft Guidance on Automated Decision-Making and Profiling.” Computer Law & Security Review 34, n.º 2, 2018, pp. 398-404. DOI: https://doi.org/10.1016/j.clsr.2017.12.002

Veale, Michael, Reuben Binns, & Lilian Edwards. “Algorithms That Remember: Model Inversion Attacks and Data Protection Law.” Philosophical Transactions of the Royal Society A 376, n.º 2133, 2018, pp. 1-18. https://doi.org/10.1098/rsta.2018.0083. DOI: https://doi.org/10.1098/rsta.2018.0083

Veale, Michael, Max Van Kleek, & Reuben Binns. “Fairness and Accountability Design Needs for Algorithmic Support in High-Stakes Public Sector Decision-Making.” Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, 1–14. https://doi.org/10.1145/3173574.3174014. DOI: https://doi.org/10.1145/3173574.3174014

World Economic Forum. “Colombia’s Digital Inclusion Strategy Is Bolstering Financial Inclusion – Especially for Women.” August 2024.

Wiese, Matthias, Ralph Knobloch, Ralf Korn, & Thomas Kretschmer. “Quant GANs: Deep Generation of Financial Time Series.” Quantitative Finance 20, n.º 9, 2020, pp. 1.419-1.440. https://www.semanticscholar.org/paper/Quant-GANs%3Adeep-generation-of-financial-time-Wiese-Knobloch/3cf57cad75d71bffac9fc4589d7b294d90558a13.

Zhang, Yingjie, Stefan Zohren, & Stephen Roberts. “Deep Reinforcement Learning for Trading: A Review.” The Journal of Financial Data Science, 2020. https://www.oxford-man.ox.ac.uk/wp-content/uploads/2020/06/Deep-Reinforcement-Learning-for-Trading.pdf. DOI: https://doi.org/10.3905/jfds.2020.1.030

Zuboff, Shoshana. “The Age of Surveillance Capitalism.” In Social Theory Re-Wired, London, Routledge, 2023, pp. 203-213. DOI: https://doi.org/10.4324/9781003320609-27

Citado por

Citaciones

Crossref
Scopus
Europe PMC