Construcción de portafolios en fondos de inversión considerando momentos estadísticos superiores
Construction of Portfolios Considering Higher Moments for Investment Funds
Contenido principal del artículo
Resumen
Este estudio busca crear portafolios con activos ETF, aplicando un enfoque cuantitativo que incluye momentos estadísticos de orden superior, más allá de la normalidad de la utilidad esperada. El objetivo es optimizar la utilidad y destacar los tres portafolios principales. Al evaluar portafolios con ETF como LABU, PSQ, FXI, SPY e IWM, se notó una reducción en rendimientos al aplicar momentos superiores. El portafolio 2, bajo la hipótesis de normalidad, sobresalió por su alta media de rendimiento y baja volatilidad, a pesar de una curtosis elevada. Sin embargo, la inclusión de momentos superiores indicó un aumento del riesgo, lo que hizo que ningún portafolio fuera óptimo para inversión.
Palabras clave:
Descargas
Detalles del artículo
Referencias (VER)
Arditti, D. (1967). Risk and the required return on equity. The Journal of Finance, 22(1), 19-36. https://doi.org/10.2307/2977297 DOI: https://doi.org/10.1111/j.1540-6261.1967.tb01651.x
Aksaraylı, M., y Pala, O. (2018). A polynomial goal programming model for portfolio optimization based on entropy and higher moments. Expert Systems with Applications, 94, 185-192. https://doi.org/10.1016/j.eswa.2017.10.056 DOI: https://doi.org/10.1016/j.eswa.2017.10.056
BlackRock (2023). iShares Russell 2000 ETF. https://www.blackrock.com/cl/produc-tos/239710/ishares-russell-2000-etf
Bergh, G., y Rensburg, P. (2008). Hedge funds and higher moment portfolio selection. Journal of Derivatives & Hedge Funds, 14, 102-126. https://doi.org/10.1057/ jdhf.2008.14 DOI: https://doi.org/10.1057/jdhf.2008.14
Brito, R. P., Sebastião, H. y Godinho, P. (2019). Portfolio management with higher moments: The cardinality impact. International Transactions in Operational Research, 26(6), 2531-2560. https://doi.org/10.1111/itor.12404 DOI: https://doi.org/10.1111/itor.12404
Charupat, N. y Miu, P. (2013). The pricing efficiency of leveraged exchange-traded funds: evidence from the USmarkets. Journal of Financial Research, 36(2), 253- 278. https://doi.org/10.1111/j.1475-6803.2013.12010.x DOI: https://doi.org/10.1111/j.1475-6803.2013.12010.x
Dahlquist, M., Farago, A., y Tédongap, R. (2017). Asymmetries and portfolio choice. The Review of Financial Studies, 30(2), 667-702. https://doi.org/10.1093/rfs/hhw091 DOI: https://doi.org/10.1093/rfs/hhw091
Fama, E. F. (1965). The behavior of stock-market prices. The journal of Business, 38(1), 34-105. DOI: https://doi.org/10.1086/294743
Harvey, C. R., Liechty, J. C., Liechty, M. W. y Mueller, P. (2010). Portfolio selection with higher moments. Quantitative Finance, 10, 469-485. http://dx.doi.org/10.1080/14697681003756877 DOI: https://doi.org/10.1080/14697681003756877
Harvey, C. R. y Siddique, A. (1999). Autoregressive conditional skewness. Journal of fi-nancial and quantitative analysis, 34(4), 465-487. https://doi.org/10.2307/2676230 DOI: https://doi.org/10.2307/2676230
Gong, X., Yu, C., Min, L. y Ge, Z. (2021). Regret theory-based fuzzy multi-objective portfolio selection model involving deacross-efficiency and higher moments. Applied Soft Computing, 100, 106958. https://doi.org/10.1016/j.asoc.2020.106958 DOI: https://doi.org/10.1016/j.asoc.2020.106958
Guiso, L. y Paiella, M. (2001). Risk Aversion, Wealth and Background Risk. Micro-economic Theory Journal. https://doi.org/10.2139/ssrn.262958. DOI: https://doi.org/10.2139/ssrn.262958
Jean, W. H. (1971). The extension of portfolio analysis to three or more parameters. Journal of financial and Quantitative Analysis, 6(1), 505-515. https://doi. org/10.2307/2330125 DOI: https://doi.org/10.2307/2330125
Jondeau, E., y Rockinger, M. (2006). Optimal portfolio allocation under higher moments. European Financial Management, 12(1), 29-55. https://doi.org/10.1111/j.1354-7798.2006.00309.x DOI: https://doi.org/10.1111/j.1354-7798.2006.00309.x
Konno, H., Hiroshi, S. e Hiroaki, Y. (1993). A mean-absolute deviation-skewness portfolio optimization model. Annals of Operations Research, 45(1), 205-220. DOI: https://doi.org/10.1007/BF02282050
Lai, T. Y. (1991). Portfolio selection with skewness: A multiple-objective approach. Review of Quantitative Finance and Accounting, 1, 293-305. https://doi.org/10.1007/BF02408382 DOI: https://doi.org/10.1007/BF02408382
Levy, H., y Arditti, F. D. (1975). Valuation, leverage and the cost of capital in the case of depreciable assets: A reply. The Journal of Finance, 30(1), 221-223. https://doi.org/10.2307/2978446 DOI: https://doi.org/10.1111/j.1540-6261.1975.tb03175.x
Levy, H. y Markowitz, H. M. (1979). Approximating expected utility by a function of mean and variance. The American Economic Review, 69(3), 308-317. https://www.jstor.org/stable/1807366
Mandelbrot, B. (1963). New methods in statistical economics. Journal of Political Economy, 71(5), 421-440. https://doi.org/10.1086/258792 DOI: https://doi.org/10.1086/258792
Markowitz, H. (1952). Portfolio Selection. Journal of Finance, American Finance Association, 7(1), 77-91. https://doi.org/10.2307/2975974 DOI: https://doi.org/10.1111/j.1540-6261.1952.tb01525.x
Molina, M. (2022). Paso a paso. Prueba de la t de Student para muestras independientes. Revista electrónica AnestesiaR, 14(8), 1-5. https://doi.org/10.30445/rear.v14i8.1060 DOI: https://doi.org/10.30445/rear.v14i8.1060
Pierro, M. D. y Mosevich, J. (2011). Effects of skewness and kurtosis on portfolio rankings. Quantitative Finance, 11(10), 1449-1453. https://doi.org/10.1080/1469 7688.2010.495723 DOI: https://doi.org/10.1080/14697688.2010.495723
Peiro, A. (1999). Skewness in financial returns. Journal of Banking & Finance, 23(6), 847-862. https://doi.org/10.1016/S0378-4266(98)00119-8 DOI: https://doi.org/10.1016/S0378-4266(98)00119-8
Premaratne, G. y Bera, A. K. (2000). Modeling asymmetry and excess kurtosis in stock return data. Illinois Research & Reference Working Paper No. 00-123. http://dx.doi.org/10.2139/ssrn.259009 DOI: https://doi.org/10.2139/ssrn.259009
Vilella, F. (2020). Rebrotes del Covid-19 mantendrán en auge a sectores ya beneficiados. Revista Uruguaya de Economía y Finanzas Personales, Portfolio, 102(8), 29-32.
Saranya, K. y Prasanna, P. K. (2014). Portfolio selection and optimization with higher moments: Evidence from the Indian stock market. Asia-Pacific Financial Markets, 21, 133-149. https://doi.org/10.1007/s10690-014-9180-0 DOI: https://doi.org/10.1007/s10690-014-9180-0
Salinas, S. M., Maldonado, D. A. y Díaz, L. G. (2010). Estimación del riesgo en un portafolio de activos. Apuntes del CENES, 29(50), 117-150.
Sweta, K. (2023). Top-Ranked ETFS to Buy on Small-Cap Comeback. Yahoo Finance.
Steyn, J. P. y Theart, L. (2021). The pricing of skewness: Evidence from the Johannesburg Stock Exchange. Investment Analysts Journal, 50(2), 133-144. https://doi.org/10.1080/10293523.2021.1898744 DOI: https://doi.org/10.1080/10293523.2021.1898744
Thiele, S. (2020). Modeling the conditional distribution of financial returns with asymmetric tails. Journal of Applied Econometrics, 35(1), 46-60. https://doi. org/10.1002/jae.2730tyva(2023). Qué es el etfspy. https://tyba.com.co/blog/spy/ DOI: https://doi.org/10.1002/jae.2730
Xu, Z., Li, X. y Chevapatrakul, T. (2019). Return asymmetry and the cross sección of stock returns. Social Science Research Network. http://dx.doi.org/10.2139/ ssrn.2850842
Zhu, F., Luo, X. y Jin, X. (2019). Predicting the volatility of the iShares China Large- Cap ETF: What is the role of the SSE 50 ETF? Pacific-Basin Finance Journal, 57, 101192. https://doi.org/10.1016/j.pacfin.2019.101192 DOI: https://doi.org/10.1016/j.pacfin.2019.101192