Optimización robusta de portafolio empleando métodos Bayesianos
Robust portfolio optimization using Bayesian methods
Contenido principal del artículo
Resumen
En este artículo se implementa un modelo de optimización robusta bayesiana para la selección óptima de un portafolio de inversión. Para ello, se extiende el modelo desarrollado por Meucci, que consiste en la incorporación del enfoque bayesiano al modelo de portafolio robusto para definir el conjunto de incertidumbre de tipo elipsoidal, bajo una distribución Wishart inversa. De esta forma, se incorpora la incertidumbre de los parámetros estimados para crear la contraparte robusta en el modelo de portafolio. El modelo propuesto utiliza una función de distribución Gamma, como generalización de la función Wishart. Los resultados confirman las conclusiones de Meucci y corroboran las propiedades atribuidas a este tipo de portafolios.
Palabras clave:
Descargas
Detalles del artículo
Referencias (VER)
Avramov, D. y Zhou, G. (2010). Bayesian portfolio analysis. Annual Review of Financial Economics, 2(1), 25-47. https://faculty.runi.ac.il/davramov/paper10.pdf DOI: https://doi.org/10.1146/annurev-financial-120209-133947
Bade, A., Frahm, G. y Jaekel, U. (2009). A general approach to Bayesian portfolio optimization. Mathematical Methods of Operations Research, 70(2), 337-356. https://doi.org/10.1007/s00186-008-0271-4 DOI: https://doi.org/10.1007/s00186-008-0271-4
Best, M. y Grauer, R. (1991). Sensitivity analysis for mean-variance portfolio problems. Management Science, 37(8), 980-989. https://doi.org/10.1287/mnsc.37.8.980 DOI: https://doi.org/10.1287/mnsc.37.8.980
Black, F. y Litterman, R. (1992). Global portfolio optimization. Financial Analysts Journal, 48(5), 28-43. https://doi.org/10.2469/faj.v48.n5.28 DOI: https://doi.org/10.2469/faj.v48.n5.28
Fabozzi, F., Focardi, S., Kolm, P. y Pachamanova, D. (2007). Robust portfolio optimi¬zation and management. John Wiley & Sons. DOI: https://doi.org/10.3905/jpm.2007.684751
Fama, E. y French, K. (1993). Common risk factors in the returns on stocks and bonds. Journal of financial economics, 33(1), 3-56. https://doi.org/10.1016/0304- 405X(93)90023-5 DOI: https://doi.org/10.1016/0304-405X(93)90023-5
Garlappi, L., Uppal, R. y Wang, T. (2007). Portfolio selection with parameter and mo¬del uncertainty: A multi-prior approach. The Review of Financial Studies, 20(1), 41-81. https://doi.org/10.1093/rfs/hhl003 DOI: https://doi.org/10.1093/rfs/hhl003
Georgantas, A. (2020). Robust Optimization Approaches for Portfolio Selection: A Computational and Comparative Analysis. Working paper. https://arxiv.org/ abs/2010.13397 DOI: https://doi.org/10.1007/s10479-021-04177-y
Goldfarb, D. e Iyengar, G. (2003). Robust portfolio selection problems. Mathematics of Operations Research, 28(1), 1-38. https://doi.org/10.1287/moor.28.1.1.14260 DOI: https://doi.org/10.1287/moor.28.1.1.14260
Halldórsson, B. y Tütüncü, R. H. (2003). An interior-point method for a class of saddle-point problems. Journal of Optimization Theory and Applications, 116(3), 559-590. https://doi.org/10.1023/A:1023065319772 DOI: https://doi.org/10.1023/A:1023065319772
Hoffman, M., Brochu, E. y De Freitas, N. (2011). Portfolio allocation for ayesian optimi-zation. En Proceedings of the Twenty-Seventh Conference on Uncertainty in Ar¬tificial Intelligence, 327-336. https://dl.acm.org/doi/abs/10.5555/3020548.3020587
Kim, W. C., Kim, J. H., Ahn, S. H. y Fabozzi, F. J. (2013). What do robust equity port¬folio models really do? Annals of Operations Research, 205(1), 141-168. https:// doi.org/10.1007/s10479-012-1247-6 DOI: https://doi.org/10.1007/s10479-012-1247-6
Kim, W. C., Kim, J. H. y Fabozzi, F. J. (2015). Robust Equity Portfolio Management: Formulations, Implementations, and Properties Using MATLAB. John Wiley & Sons. DOI: https://doi.org/10.1002/9781118797358
Kim, J. H., Kim, W. C., Kwon, D. G. y Fabozzi, F. J. (2018). Robust equity portfo¬lio performance. Annals of Operations Research, 266(1), 293-312. https://doi. org/10.1007/s10479-017-2739-1 DOI: https://doi.org/10.1007/s10479-017-2739-1
Lobo, M. S., Vandenberghe, L., Boyd, S. y Lebret, H. (1998). Applications of second-order cone programming. Linear Algebra and its Applications, 284(1-3), 193-228. https://doi.org/10.1016/S0024-3795(98)10032-0 DOI: https://doi.org/10.1016/S0024-3795(98)10032-0
Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77-91. DOI: https://doi.org/10.1111/j.1540-6261.1952.tb01525.x
Markowitz, H. (1959). Portfolio selection: Efficient diversification of investments. New Heaven: Yale university Press.
Meucci, A. (2005). Risk and asset allocation (vol. 1). Springer. DOI: https://doi.org/10.1007/978-3-540-27904-4
Meucci, A. (2011). Robust Bayesian Allocation. ssrn Working paper 681553. https:// papers.ssrn.com/sol3/papers.cfm?abstract_id=681553 DOI: https://doi.org/10.2139/ssrn.681553
Michaud, R. (1998). Efficient asset management: A practical guide to stock portfolio optimization and asset allocation. Oxford University Press.
Michaud, R. y Michaud, R. (2008). Estimation error and portfolio optimization: A resampling solution. Journal of Investment Management, 6(1), 8-28. DOI: https://doi.org/10.2139/ssrn.2658657
Nesterov, Y. y Nemirovsky, A. (1993). Interior Point Polynomial Methods in Convex Programming: Theory and Algorithms. SIAM. DOI: https://doi.org/10.1137/1.9781611970791
Pachamanova, D. y Fabozzi, F. (2012). Equity portfolio selection models in practice. En-cyclopedia of Financial Models, 1(1), 61-87. https://doi.org/10.1002/9781118182635. efm0046 DOI: https://doi.org/10.1002/9781118182635.efm0046
Tütüncü, R. y Koenig, M. (2004). Robust asset allocation. Annals of Operations Research, 132(1), 157-187. https://doi.org/10.1023/b:anor.0000045281.41041.ed DOI: https://doi.org/10.1023/B:ANOR.0000045281.41041.ed
Williams, J. (1938). The Theory of Investment Value. Harvard University Press.
Zapata, C. (2021). Optimización robusta de portafolios: conjuntos de incertidumbre y contrapartes robustas. odeon, 20, 93-121. https://doi.org/10.18601/17941113.n20.04 DOI: https://doi.org/10.18601/17941113.n20.04