Medidas de desempeño por cocientes y dominancia estocástica de primer y segundo orden

Performance measures by quotients and stochastic dominance of first and second order

Contenido principal del artículo

John Freddy Moreno Trujillo

Resumen

Se presentan los conceptos básicos de la teoría de dominancia estocástica y la definición de medidas de desempeño por cociente de Farinelli y Tibiletti (FT). Se establece una relación de consistencia entre la selección de prospectos de inversión por dominancia estocástica y las medidas FT y se muestra una extensión de esta relación al caso de la medida de desempeño Omega.

Palabras clave:

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Referencias (VER)

Artzner, P., Delbaen, F., Eber, J. M. y Heath, D. (1999). Coherent measures of risk. Mathematical finance, 9(3), 203-228.

Farinelli, S. y Tibiletti, L. (2008). Sharpe thinking in asset ranking with one-sided measures. European Journal of Operational Research, 185(3), 1542-1547.

Farinelli, S., Rossello, D. y Tibiletti, L. (2006, May). Computational asset allocation using one-sided and two-sided variability measures. In International Conference on Computational Science (pp. 324-331). Springer, Berlin, Heidelberg.

Fishburn, P. C. (1977). Mean-risk analysis with risk associated with below-target returns. The American Economic Review, 67(2), 116-126.

Fishburn, P. C. (1980). Stochastic dominance and moments of distributions. Mathematics of Operations Research, 5(1), 94-100.

Fong, W. M. (2016). Stochastic dominance and the omega ratio. Finance Research Letters, 17, 7-9.

Guo, X. y Wong, W. K. (2016). Multivariate stochastic dominance for risk averters and risk seekers. rairo-Operations Research, 50(3), 575-586.

Keating, C. y Shadwick, W. F. (2002). A universal performance measure. Journal of performance measurement, 6(3), 59-84.

Keating, C. y Shadwick, W. F. (2002). An introduction to omega. aima Newsletter.

Leland, H. E. (1999). Beyond Mean–Variance: Performance Measurement in a Nonsymmetrical World (corrected). Financial Analysts Journal, 55(1), 27-36.

Levy, H. (2015). Stochastic dominance: Investment decision making under uncertainty. New York: Springer.

Levy, H. (1992). Stochastic dominance and expected utility: survey and analysis. Management science, 38(4), 555-593.

Ma, C. y Wong, W. K. (2010). Stochastic dominance and risk measure: A decision-theoretic foundation for VaR and C-VaR. European Journal of Operational Research, 207(2), 927-935.

Niu, C., Wong, W. K. y Zhu, L. (2016). First Stochastic Dominance and Risk Measurement.


Ogryczak, W. y Ruszczyński, A. (1999). From stochastic dominance to mean-risk models: Semideviations as risk measures. European Journal of Operational Research, 116(1), 33-50.

Roy, A. D. (1952). Safety first and the holding of assets. Econometrica: Journal of the Econometric Society, 431-449.

Sharpe, W. F. (1966). Mutual fund performance. The Journal of business, 39(1), 119-138.

Sharpe, W. F. (1994). The sharpe ratio. The Journal of Portfolio Management, 21(1), 49-58.

Sortino, F., van der Meer, R. y Plantinga, A. (1999). The upside potential ratio. Journal of Performance Measurement, 4(1), 10-15.

Whitmore, G. A. (1970). Third-degree stochastic dominance. The American Economic Review, 60(3), 457-459.

Citado por