Optimización robusta de portafolios: conjuntos de incertidumbre y contrapartes robustas
Robust Portfolio Optimization: Uncertainty Sets and Robust Counterparts
Contenido principal del artículo
Resumen
Los modelos de optimización robusta (OR) han permitido superar las limitaciones del modelo media-varianza (MV), que comprende el enfoque tradicional para la selección de portafolios óptimos de inversión, al incorporar la incertidumbre de los parámetros del modelo (retornos esperados y covarianzas). En este trabajo se presentan los desarrollos de la OR en la teoría de portafolio mediante el enfoque del peor de los casos, a partir del cual se incorporan las formulaciones robustas para el modelo MV, teniendo en cuenta los trabajos de Markowitz y Sharpe. A partir de estas formulaciones, se lleva a cabo una sencilla aplicación en la que se resaltan las ventajas y bondades de las contrapartes robustas frente al modelo MV original. Al final, se presenta una breve discusión de formulaciones adicionales en materia de conjuntos de incertidumbre y otras medidas de desempeño.
Palabras clave:
Descargas
Detalles del artículo
Referencias (VER)
Bandi, C. y Bertsimas, D. (2012). Tractable stochastic analysis in high dimensions via robust optimization. Mathematical programming, 134(1), 23-70.
Ben-Tal, A. y Nemirovski, A. (1998). Robust convex optimization. Mathematics of Operations Research, 23(4), 769-805.
Bertsimas, D., Darnell, C. y Soucy, R. (1999). Portfolio construction through mixedinteger programming at Grantham, Mayo, Van Otterloo and Company. Interfaces, 29(1), 49-66.
Bertsimas, D. y Brown, D. (2009). Constructing uncertainty sets for robust linear optimization. Operations Research, 57(6), 1483-1495.
Bertsimas, D., Brown, D. y Caramanis, C. (2011). Theory and applications of robust optimization. SIAM Review, 53(3), 464-501.
Best, M. y Grauer, R. (1991). On the sensitivity of mean variance efficient portfolios to changes in asset Means. The Review of Financial Studies, 4(2), 314-342.
Black, F. y Litterman, R. (1991). Global Asset Allocation with Equities, Bonds, and Currencies. Goldman, Sachs & Co Fixed Income Research, 1-44.
Black, F. y Litterman, R. (1992). Global portfolio optimization. Financial Analysts Journal, 48(5), 28-43.
Blog, B., Hoek, G., Kan, A. y Timmer, G. (1983). The optimal selection of small portfolios. Management Science, 29(7), 792-798.
Chopra, V. y Ziemba, W. (1993). The effects of errors in means, variances, and covariances on optimal portfolio choice. Journal of Portfolio Management, 19(2), 6-11.
Choueifaty, Y. y Coignard, Y. (2008). Toward maximum diversification. Journal of Portfolio Management, 35(1), 40-51.
El Ghaoui, L., Oustry, F. y Lebret, H. (1998). Robust solutions to uncertain semidefinite programs. SIAM Journal on Optimization, 9(1), 33-52.
El Ghaoui, L., Oks, M. y Oustry, F. (2003). Worst-case value-at-risk and robust portfolio optimization: A conic programming approach. Operations Research, 51(4), 543-556.
Elton, E., Gruber, M. y Padberg, M. (1976). Simple criteria for optimal portfolio selection. The Journal of Finance, 31(5), 1341-1357.
Fabozzi, F., Huang, D. y Zhou, G. (2010). Robust portfolios: Contributions from operations research and finance. Annals of Operations Research, 176(1), 191-220.
Fabozzi, F., Kolm, P., Pachamanova, D. A. y Focardi, S. (2007). Robust portfolio optimization and management. John Wiley & Sons.
Francis, J. y Kim, D. (2013). Modern Portfolio Theory: Foundations, Analysis, and New Developments. John Wiley & Sons.
Garlappi, L., Uppal, R. y Wang, T. (2007). Portfolio selection with parameter and model uncertainty: A multi-prior approach. Review of Financial Studies, 20(1), 41-81.
Georgantas, A., Doumpos, M. y Zopounidis, C. (2021). Robust optimization approaches for portfolio selection: a comparative analysis. Annals of Operations Research, 1-17.
Goldfarb, D. e Iyengar, G. (2003). Robust portfolio selection problems. Mathematics of Operations Research, 28(1), 1-38.
He, G. y Litterman, R. (1999). The intuition behind Black-Litterman model portfolios. Technical report, Goldman Sachs–Investment Management Research, 1-18.
Huang, D., Fabozzi, F. y Fukushima, M. (2007). Robust portfolio selection with uncertain exit time using worst-case VaR strategy. Operations Research Letters, 35, 627-635.
Idzorek, T. (2007). A step-by-step guide to the Black-Litterman model: Incorporating user-specified confidence levels (pp. 17-38). En S. Satchell (Ed.). Forecasting expected returns in the financial markets. Academic Press.
James, W. y Stein, C. (1961). Estimation with quadratic loss. Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, 1, 361-380.
Kapsos, M., Christofides, N. y Rustem, B. (2014). Worst-case robust Omega ratio. European Journal of Operational Research, 234(2), 499-507.
Kara, G., Ozmen, A. y Weber, G. (2019). Stability advances in robust portfolio optimization under parallelepiped uncertainty. Central European Journal of Operations Research, 27(1), 241-261.
Keating, C. y Shadwick, W. (2002). A universal performance measure. Journal of Performance Measurement, 6(3), 59-84.
Kim, J., Kim, W. y Fabozzi, F. (2013). Recent developments in robust portfolios with a worst-case approach. Journal of Optimization Theory and Applications, 161(1), 103-121.
Kim, J., Kim, W., Kwon, D. y Fabozzi, F. (2018). Robust equity portfolio performance. Annals of Operations Research, 266(1-2), 293-312.
Kolm, P., Tütüncü, R. y Fabozzi, F. (2014). 60 years of portfolio optimization: Practical challenges and current trends. European Journal of Operational Research, 234(2), 356-371.
Ledoit, O. y Wolf, M. (2003). Improved estimation of the covariance matrix of stock returns with an application to portfolio selection. Journal of Empirical Finance, 10(5), 603-621.
Lintner, J. (1965). Security prices, risk, and maximal gains from diversification. The Journal of Finance, 20(4), 587-615.
Lobo, M. y Boyd, S. (2000). Portfolio optimization with linear and fixed transaction costs and bounds on risk. Annals of Operations Research, 152(1), 341-365.
Lu, Z. (2011b). Robust portfolio selection based on a joint ellipsoidal uncertainty set. Optimization Methods & Software, 26, 89-104.
Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77-91.
Markowitz, H. (1959). Portfolio selection: efficient diversification of investments. Wiley.
Meucci, A. (2008). Fully flexible views: Theory and practice. Risk, 21(10), 97-102.
Meucci, A. (2009). Enhancing the Black-Litterman and related approaches: Views and stress-test on risk factors. Journal of Asset Management, 10, 89-96.
Meucci, A. (2011). Robust Bayesian Allocation. https://ssrn.com/abstract=681553, 1-18.
Michaud, R. (1989). The Markowitz optimization enigma: Is optimization optimal? Financial Analysts Journal, 45(1), 31-42.
Mossin, J. (1966). Equilibrium in a capital asset market. Econometrica, 34(4), 768-783.
Pachamanova, D. y Fabozzi, F. (2012). Equity Portfolio Selection Models in Practice. Encyclopedia of Financial Models, 1, 61-87.
Rockefellar, R. y Uryasev, S. (2000). Optimization of conditional value-at-risk. Journal of Risk, 3(1), 21-41.
Romero, C. (2010). La Teoría Moderna de Portafolio: un ensayo sobre sus formulaciones originales y sus repercusiones contemporáneas. ODEON, 5, 103-118.
Schöttle, K., Werner, R. y Zagst, R. (2010). Comparison and robustification of Bayes and Black-Litterman models. Mathematical Methods of Operations Research, 71(3), 453-475.
Sharma, A., Utz, S. y Mehra, A. (2017). Omega-CVaR portfolio optimization and its worst-case analysis. OR Spectrum, 39(2), 505-539.
Sharpe, W. (1964). Capital Asset Prices: A Theory of Market Equilibrium Under Conditions of Risk. The Journal of Finance, 19(1), 425-42.
Sortino, F. y Price, L. (1994). Performance measurement in a downside risk framework. Journal of Investing, 3(3), 59-64.
Treynor, J. (1965) How to rate management of investment funds. Harvard Business Review, 43, 63-75.
Tütüncü, R. y Koenig, M. (2004). Robust asset allocation. Annals of Operations Research, 132(1-4), 157-187.
Xidonas, P., Steuer, R. y Hassapis, C. (2020). Robust portfolio optimization: A categorized bibliographic review. Annals of Operations Research, 292(1), 533-552.
Yin, C., Perchet, R. y Soupé, F. (2021). A practical guide to robust portfolio optimization. Quantitative Finance, 21(6), 911-928.
Zhu, S. y Fukushima, M. (2009). Worst-case conditional value-at-risk with application to robust portfolio management. Operations Research, 57(5), 1155-1168.
Zymler, S., Kuhn, D. y Rustem, B. (2013). Worst-case value at risk of nonlinear portfolios. Management Science, 59(1), 172-188.