How well can ChatGPT manage service failures?
How well can ChatGPT manage service failures?
Contenido principal del artículo
Resumen
Este estudio examina la efectividad de ChatGPT-4o en los procesos de recuperación de fallas de servicio en empresas hoteleras. Los datos del estudio se recopilaron por medio de entrevistas semiestructuradas con empresas hoteleras y clientes. Se crearon dos formularios de entrevista diferentes. El primero fue codificado como Entrevista-1, para empleados y gerentes de empresas hoteleras. El segundo, Entrevista-2, se aplicó a los clientes que hubiesen experimentado al menos un fallo en el servicio en el pasado y que se hayan alojado en el negocio hotelero durante el último año. Se aplicó un muestreo intencional en ambas entrevistas. En el marco de estos criterios, se realizaron entrevistas a nueve empleados de empresas hoteleras (incluidos directivos) y a diecinueve clientes. Los resultados indican que ChatGPT-4o podría ser más efectivo que los recursos humanos en la recuperación de fallas de servicio y que desempeña un papel importante en la mejora de la satisfacción del cliente. Este estudio evalúa el potencial de ChatGPT-4o en los procesos de recuperación de servicios y ofrece soluciones innovadoras para mejorar la calidad del servicio y la satisfacción del cliente en el sector turístico.
Descargas
Detalles del artículo
Referencias (VER)
Akarsu, T. N., Marvi, R., & Foroudi, P. (2023). Service failure research in the hospitality and tourism industry: A synopsis of past, present and future dynamics from 2001 to 2020. International Journal of Contemporary Hospitality Management, 35(1), 186-217. https://doi.org/10.1108/IJCHM-11-2021-1441
Albrecht, A. K., Walsh, G., & Beatty, S. E. (2017). Perceptions of group versus individual service failures and their effects on customer outcomes: The role of attributions and customer entitlement. Journal of Service Research, 20(2), 188-203. https://doi.org/10.1177/1094670516675416
Akdu, U. (2019). Otel işletmelerinde uygulanan hizmet hatası telafi stratejilerinin hizmet kalitesi algısına etkisi. Afyon Kocatepe Üniversitesi Sosyal Bilimler Dergisi, 21(2), 625-646. https://doi.org/10.32709/akusosbil.525109
Ali, F., El-Manstrly, D., & Abbasi, G. A. (2023). Would you forgive me? From perceived justice and complaint handling to customer forgiveness and brand credibility-symmetrical and asymmetrical perspectives. Journal of Business Research, 166, 114138. https://doi.org/10.1016/j.jbusres.2023.114138
Ali, F., & OpenAI, Inc, C. (2023). Let the devil speak for itself: Should ChatGPT be allowed or banned in hospitality and tourism schools? Journal of Global Hospitality and Tourism, 2(1), 1-6. https://www.doi.org/10.5038/2771-5957.2.1.1016
Altun, O., Saydam, M. B., Karatepe, T., & Dima, Ş. M. (2024). Unveiling ChatGPT in tourism education: Exploring perceptions, advantages and recommendations from educators. Worldwide Hospitality and Tourism Themes, 16(1), 105-118. https://doi.org/10.1108/WHATT-01-2024-0018
Augustyn, M. M., & Seakhoa-King, A. (2005). Is the Servqual scale an adequate measure of quality in leisure, tourism and hospitality? In J. S. Chen (Ed.), Advances in hospitality and leisure (Vol. 1, pp. 3-24). Emerald Group Publishing Limited. https://doi.org/10.1016/S1745-3542(04)01001-X
Ayyildiz, T., Ayyildiz, A. Y., & Koc, E. (2024). Illusion of control in service failure situations: Customer satisfaction/dissatisfaction, complaints, and behavioural intentions. Current Psychology, 43(1), 515-530. https://doi.org/10.1007/s12144-023-04292-y
Bae Suk, J., Hwan Chung, S., Choi, K., & Park, J. (2009). The causal relationship on quality-centered organizational culture and its impact on service failure and service recovery. Asian Journal on Quality, 10(1), 37-51. https://doi.org/10.1108/15982680980000626
Bagherzadeh, R., Rawal, M., Wei, S., & Saavedra, J. L. (2020). The journey from customer participation in service failure to co-creation in service recovery. Journal of Retailing and Consumer Services, 54, 102058. https://doi.org/10.1016/j.jretconser.2020.102058
Bambauer-Sachse, S., & Rabeson, L. (2015). Determining adequate tangible compensation in service recovery processes for developed and developing countries: The role of severity and responsibility. Journal of Retailing and Consumer Services, 22, 117-127. https://doi.org/10.1016/j. jretconser.2014.08.001
Bergel, M., & Brock, C. (2018). The impact of switching costs on customer complaint behavior and service recovery evaluation. Journal of Service Theory and Practice, 28(4), 458-483. https://doi. org/10.1108/JSTP-02-2017-0035
Bernard, H. R. (2017). Research methods in anthropology: Qualitative and quantitative approaches (6th ed.). Rowman & Littlefield.
Boshoff, C. (2005). A re-assessment and refinement of RECOVSAT: An instrument to measure satisfaction with transaction-specific service recovery. Managing Service Quality: An International Journal, 15(5), 410-425. https://doi.org/10.1108/09604520510617275
Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77-101. https://doi.org/10.1191/1478088706qp063oa
Brinkmann, S. (2014). Unstructured and semi-structured interviewing. In P. Leavy (Ed.), The Oxford handbook of qualitative research (pp. 277-299). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780199811755.013.030
Carvalho, I., & Ivanov, S. (2024). ChatGPT for tourism: Applications, benefits and risks. Tourism Review, 79(2), 290-303. https://doi.org/10.1108/TR-02-2023-0088
Chen, H.-J. (2024). Assessing the influence of optimism on users’ continuance use intention of ChatGPT: An Expectation-Confirmation Model perspective. International Journal of Management Studies and Social Science Research, 6(1), 347-353. https://doi.org/10.56293/IJMSSSR.2024.4831
Cheng, X., Chen, Y., Wang, P., Zhou, Y., Wei, X., Luo, W., & Duan, Q. (2024). A novel ChatGPT-based multimodel framework for tourism review mining: A case study on China’s five sacred mountains. Journal of Hospitality and Tourism Technology, 15(4), 592-609. https://doi.org/10.1108/JHTT-06-2023-0170
Choi, B., & Choi, B.-J. (2014). The effects of perceived service recovery justice on customer affection, loyalty, and word-of-mouth. European Journal of Marketing, 48(1/2), 108-131. https://doi.org/10.1108/EJM-06-2011-0299
Choi, S., Mattila, A. S., & Bolton, L. E. (2021). To err is human (-oid): How do consumers react to robot service failure and recovery? Journal of Service Research, 24(3), 354-371. https://doi.org/10.1177/1094670520978798
Christensen, J., Hansen, J. M., & Wilson, P. (2025). Understanding the role and impact of Generative Artificial Intelligence (AI) hallucination within consumers’ tourism decision-making processes. Current Issues in Tourism, 28(4), 545-560. https://doi.org/10.1080/13683500.2023.2300032
Creswell, J. W. (2013). Qualitative inquiry and research design: Choosing among five approaches (3rd ed.). Sage.
Cropanzano, R., Prehar, C. A., & Chen, P. Y. (2002). Using social exchange theory to distinguish procedural from interactional justice. Group & Organization Management, 27(3), 324-351. https:// doi.org/10.1177/1059601102027003002
Dalgıç, A. (2023). Restoran İşletmelerine Yapılan Olumsuz Yorumları ChatGPT Değerlendirebilir Mi? TripAdvisor’da Bir Uygulama. İşletme Araştırmaları Dergisi, 15(4), 3069-3080. https://doi. org/10.20491/isarder.2023.1766
Dalgıç, A., Yaşar, E., & Demir, M. (2024). ChatGPT and learning outcomes in tourism education: The role of digital literacy and individualized learning. Journal of Hospitality, Leisure, Sport & Tourism Education, 34, 100481. https://doi.org/10.1016/j.jhlste.2024.100481
Davidow, M. (2003). Organizational responses to customer complaints: What works and what doesn’t. Journal of Service Research, 5(3), 225-250. https://doi.org/10.1177/1094670502238917
Demir, M., & Demir, Ş. Ş. (2023a). Is ChatGPT the right technology for service individualization and value co-creation? Evidence from the travel industry. Journal of Travel & Tourism Marketing, 40(5), 383-398. https://doi.org/10.1080/10548408.2023.2255884
Demir, Ş. Ş., & Demir, M. (2023b). Professionals’ perspectives on ChatGPT in the tourism industry: Does it inspire awe or concern? Journal of Tourism Theory and Research, 9(2), 61-77. https://doi. org/10.24288/jttr.1313481
Dwivedi, Y. K., Pandey, N., Currie, W., & Micu, A. (2024). Leveraging ChatGPT and other generative artificial intelligence (AI)-based applications in the hospitality and tourism industry: Practices, challenges and research agenda. International Journal of Contemporary Hospitality Management, 36(1), 1-12. https://doi.org/10.1108/IJCHM-05-2023-0686
Edström, A., Nylander, B., Molin, J., Ahmadi, Z., & Sörqvist, P. (2022). Where service recovery meets its paradox: Implications for avoiding overcompensation. Journal of Service Theory and Practice, 32(7), 1-13. https://doi.org/10.1108/JSTP-06-2021-0120
Elbaz, A. M., Soliman, M., Al-Alawi, A., Al-Romeedy, B. S., & Mekawy, M. (2023). Customer responses to airline companies’ service failure and recovery strategies: The moderating role of service failure habit. Tourism Review, 78(1), 1-17. https://doi.org/10.1108/TR-03-2022-0108
Gursoy, D., Li, Y., & Song, H. (2023). ChatGPT and the hospitality and tourism industry: An overview of current trends and future research directions. Journal of Hospitality Marketing & Management, 32(5), 579-592. https://doi.org/10.1080/19368623.2023.2211993
Heider, F. (2013). The psychology of interpersonal relations. Psychology Press. First edition, 1958.
Ho, T. H., Tojib, D., & Tsarenko, Y. (2020). Human staff vs. service robot vs. fellow customer: Does it matter who helps your customer following a service failure incident? International Journal of Hospitality Management, 87, 102501. https://doi.org/10.1016/j.ijhm.2020.102501
Javaid, M., Haleem, A., & Singh, R. P. (2023). A study on ChatGPT for Industry 4.0: Background, potentials, challenges, and eventualities. Journal of Economy and Technology, 1, 127-143. https://doi.org/10.1016/j.ject.2023.08.001
Johnston, R. (2001). Linking complaint management to profit. International Journal of Service Industry Management, 12(1), 60-69. https://doi.org/10.1108/09564230110382772
Joshi, K. (1990). An investigation of equity as a determinant of user information satisfaction. Decision Sciences, 21(4), 786-807. https://doi.org/10.1111/j.1540-5915.1990.tb01250.x
Kasneci, E., Sessler, K., Küchemann, S., Bannert, M., Dementieva, D., Fischer, F., Gasser, U., Groh, G., Günnemann, S., Hüllermeier, E., Krusche, S., Kutyniok, G., Michaeli, T., Nerdel, C., Pfeffer, J., Poquet, O., Sailer, M., Schmidt, A., Seidel, T., ... Kasneci, G. (2023). ChatGPT for good? On opportunities and challenges of large language models for education. Learning and Individual Differences, 103, 102274. https://doi.org/10.1016/j.lindif.2023.102274
Kim, J. H., Kim, J., Kim, S., & Hailu, T. B. (2024). Effects of AI ChatGPT on travelers’ travel decision-making. Tourism Review, 79(5), 1038-1057. https://doi.org/10.1108/TR-07-2023-0489
Koç, F., Şahin, N. K., & Özbek, V. (2014). Hizmet hataları ve algılanan kalite arasındaki ilişki üzerinde değiştirme maliyetinin düzenleyici etkisi: küçük işletmeler ve hizmet satın aldıkları muhasebecilere yönelik bir uygulama. Pazarlama ve Pazarlama Araştırmaları Dergisi, 7(14), 21-46. https://dergipark.org.tr/tr/pub/ppad/issue/61007/906077
Koc, E. (Ed.). (2017). Service failures and recovery in tourism and hospitality: A practical manual. CABI. https://doi.org/10.1079/9781786390677.0000
Koc, E., Hatipoglu, S., Kivrak, O., Celik, C., & Koc, K. (2023). Houston, we have a problem!: The use of ChatGPT in responding to customer complaints. Technology in Society, 74, 102333. https://doi.org/10.1016/j.techsoc.2023.102333
Kwon, S., & Jang, S. (2012). Effects of compensation for service recovery: From the equity theory perspective. International Journal of Hospitality Management, 31(4), 1235-1243. https://doi.org/10.1016/j.ijhm.2012.03.002
Lee, W. J., Kwag, S. I., & Ko, Y. D. (2020). Optimal capacity and operation design of a robot logistics system for the hotel industry. Tourism Management, 76, 103971. https://doi.org/10.1016/j.tourman.2019.103971
Lv, X., Yang, Y., Qin, D., Cao, X., & Xu, H. (2022). Artificial intelligence service recovery: The role of empathic response in hospitality customers’ continuous usage intention. Computers in Human Behavior, 126, 106993. https://doi.org/10.1016/j.chb.2021.106993
Madgavkar, A., Manyika, J., Krishnan, M., Ellingrud, K., Yee, L., Woetzel, L., Chui, M., Hunt, D. V., & Balakrishnan, S. (2019). The future of women at work: Transitions in the age of automation. McKinsey Global Institute. https://www.mckinsey.com/featured-insights/gender-equality/ the-future-of-women-at-work-transitions-in-the-age-of-automation
Marshall, M. N. (1996). Sampling for qualitative research. Family Practice, 13(6), 522-526. https://doi.org/10.1093/fampra/13.6.522
Maxham III, J. G., & Netemeyer, R. G. (2002). Modeling customer perceptions of complaint handling over time: The effects of perceived justice on satisfaction and intent. Journal of Retailing, 78(4), 239-252. https://doi.org/10.1016/S0022-4359(02)00100-8
Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook. Sage.
Olcay, A., Özekici, Y. K. (2015). Yiyecek-İçecek İşletmelerinde Hizmet Hataları, Telafi Yön-temleri ve Müşteri Memnuniyeti İlişkisi (Gaziantep Örneği). Uluslararası Sosyal Araştırmalar Dergisi, 8(41), 1254-1268. http://sosyalarastirmalar.net/cilt8/sayi41_pdf/6iksisat_kamu_isletme/olcay_atinc_yakupkemalozekici.pdf
Olson, E. D., & Ro, H. (2020). Company response to negative online reviews: The effects of procedural justice, interactional justice, and social presence. Cornell Hospitality Quarterly, 61(3), 312-331. https://doi.org/10.1177/1938965519892902
Othman, Z., Zahari, MS M., & Radzi, SM. (2013). Customer behavioral intention: Influence of service delivery failures and service recovery in Malay restaurants. Procedia-Social and Behavioral Sciences, 105, 115-121. https://doi.org/10.1016/j.sbspro.2013.11.013
Parasuraman, A., Zeithaml, V. A., & Berry, L. L. (1985). A conceptual model of service qual-ity and its implications for future research. Journal of Marketing, 49(4), 41-50. https://doi.org/10.1177/002224298504900403
Parasuraman, A., Zeithaml, V. A., & Berry, L. L. (1988). SERVQUAL: A multiple-item scale for measuring consumer perceptions of service quality. Journal of Retailing, 64(1), 12-40. https://www.marketeurexpert.fr/wp-content/uploads/2023/12/servqual.pdf
Park, J., & Jeong, E. (2019). Service quality in tourism: A systematic literature review and keyword network analysis. Sustainability, 11(13), 3665. https://doi.org/10.3390/su11133665
Park, J.-J., & Park, J.-W. (2016). Investigating the effects of service recovery quality elements on passengers’ behavioral intention. Journal of Air Transport Management, 53, 235-241. https://doi.org/10.1016/j.jairtraman.2016.03.003
Pham, H. C., Duong, C. D., & Nguyen, G. K. H. (2024). What drives tourists’ continuance intention to use ChatGPT for travel services? A stimulus-organism-response perspective. Journal of Retailing and Consumer Services, 78, 103758. https://doi.org/10.1016/j.jretconser.2024.103758
Puri, G., & Singh, K. (2018). The role of service quality and customer satisfaction in tourism industry: A review of SERVQUAL Model. International Journal of Research and Analytical Reviews, 5(4). 745-751. https://ssrn.com/abstract=3846760
Shams, G., Rather, R., Abdur Rehman, M., & Lodhi, R. N. (2021). Hospitality-based service recovery, outcome favourability, satisfaction with service recovery and consequent customer loyalty: An empirical analysis. International Journal of Culture, Tourism and Hospitality Research, 15(2), 266-284. https://doi.org/10.1108/IJCTHR-04-2020-0079
Shan, M., Zhu, Z., Chen, H., & Sun, S. (2024). Service robot’s responses in service recovery and service evaluation: The moderating role of robots’ social perception. Journal of Hospitality Marketing & Management, 33(2), 145-168. https://doi.org/10.1080/19368623.2023.2246456
Shi, J., Lee, M., Girish, V. G., Xiao, G., & Lee, C.-K. (2024). Embracing the ChatGPT revolution: Unlocking new horizons for tourism. Journal of Hospitality and Tourism Technology, 15(3), 433- 448. https://doi.org/10.1108/JHTT-07-2023-0203
Shin, H., & Kang, J. (2023). Bridging the gap of bibliometric analysis: The evolution, current state, and future directions of tourism research using ChatGPT. Journal of Hospitality and Tourism Management, 57, 40-47. https://doi.org/10.1016/j.jhtm.2023.09.001
Truong, N. T., Dang-Pham, D., McClelland, R. J., & Nkhoma, M. (2020). Service innovation, customer satisfaction and behavioural intentions: A conceptual framework. Journal of Hospitality and Tourism Technology, 11(3), 529-542. https://doi.org/10.1108/JHTT-02-2019-0030
Van Vaerenbergh, Y., Varga, D., De Keyser, A., & Orsingher, C. (2019). The service recovery journey: Conceptualization, integration, and directions for future research. Journal of Service Research, 22(2), 103-119. https://doi.org/10.1177/1094670518819852
Wirtz, J., Patterson, P. G., Kunz, W. H., Gruber, T., Lu, V. N., Paluch, S., & Martins, A. (2018). Brave new world: Service robots in the frontline. Journal of Service Management, 29(5), 907-931. https://doi.org/10.1108/JOSM-04-2018-0119
Xie, Y., & Peng, S. (2009). How to repair customer trust after negative publicity: The roles of competence, integrity, benevolence, and forgiveness. Psychology & Marketing, 26(7), 572-589. https://doi.org/10.1002/mar.20289
Xing, X., Song, M., Duan, Y., & Mou, J. (2022). Effects of different service failure types and recovery strategies on the consumer response mechanism of chatbots. Technology in Society, 70, 102049. https://doi.org/10.1016/j.techsoc.2022.102049
Xu, X., & Liu, J. (2022). Artificial intelligence humor in service recovery. Annals of Tourism Research, 95, 103439. https://doi.org/10.1016/j.annals.2022.103439
Yadav, A., & Dhar, R. L. (2021). Linking frontline hotel employees’ job crafting to service recovery performance: The roles of harmonious passion, promotion focus, hotel work experience, and gender. Journal of Hospitality and Tourism Management, 47, 485-495. https://doi.org/10.1016/j. jhtm.2021.04.018
Yang, W., & Mattila, A. S. (2012). The role of tie strength on consumer dissatisfaction responses. International Journal of Hospitality Management, 31(2), 399-404. https://doi.org/10.1016/j. ijhm.2011.06.015
Yang, Z., Zhou, J., & Yang, H. (2023). The impact of AI’s response method on service recovery satisfaction in the context of service failure. Sustainability, 15(4), 3294. https://doi.org/10.3390/ su15043294
Zhang, Y., & Prebensen, N. K. (2024). Co-creating with ChatGPT for tourism marketing materials. Annals of Tourism Research Empirical Insights, 5(1), 100124. https://doi.org/10.1016/j. annale.2024.100124