Valoración no lineal de derivados financieros en mercados con liquidez estocástica, descrita por un proceso de reversión a la media
Nonlinear valuation of financial derivatives in markets with stochastic liquidity described by a mean-reversion process
Contenido principal del artículo
Resumen
En este documento se deduce la ecuación diferencial parcial no lineal de valoración de un derivado financiero, esto en el contexto de un mercado en el cual los precios de los activos son influenciados por la liquidez y las estrategias dinámicas de negociación de un gran operador. Para esto se caracteriza la dinámica del precio del activo subyacente y se considera la condición de ausencia de arbitraje. La liquidez del mercado es estocástica y sigue un proceso con reversión a la media tipo Ornstein-Uhlenbeck.
Palabras clave:
Descargas
Detalles del artículo
Referencias (VER)
Aitken, M., y Comerton-Forde, C. (2003). How should liquidity be measured? Pacific-Basin Finance Journal, 11(1), 45-59. DOI: https://doi.org/10.1016/S0927-538X(02)00093-8
Amihud, Y. (2002). Illiquidity and stock returns: Cross-section and time-series effects. Journal of Financial Markets, 5(1), 31-56. DOI: https://doi.org/10.1016/S1386-4181(01)00024-6
Barndorff-Nielsen, O. E., y Shephard, N. (2001). Non-gaussian ornstein– uhlenbeck-based models and some of their uses in financial economics. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63(2), 167-241. DOI: https://doi.org/10.1111/1467-9868.00282
Bordag, L. A., y Frey, R. (2008). Pricing options in illiquid markets: Symmetry reductions and exact solutions. En Nonlinear models in mathematical finance: Research trends in option pricing (p. 103-130). Nova Science Publishers, Inc.
Brunetti, C., y Caldarera, A. (2004). Asset prices and asset correlations in illiquid markets. Available at SSRN 625184. DOI: https://doi.org/10.2139/ssrn.625184
Cvitanic, J., y Ma, J. (1996). Hedging options for a large investor and forward-backward sde’s. The annals of applied probability, 6(2), 370-398. DOI: https://doi.org/10.1214/aoap/1034968136
Feng, S.-P., Hung, M.-W., y Wang, Y.-H. (2014). Option pricing with stochastic liquidity risk: Theory and evidence. Journal of Financial Markets, 18, 77-95. DOI: https://doi.org/10.1016/j.finmar.2013.05.002
Frey, R. (2000). Market illiquidity as a source of model risk in dynamic hedging. Model Risk, 125-136.
Frey, R., y Patie, P. (2002). Risk management for derivatives in illiquid markets: A simulation study. Springer. DOI: https://doi.org/10.2139/ssrn.300527
Frey, R., y Polte, U. (2011). Nonlinear black–scholes equations in finance: As-sociated control problems and properties of solutions. SIAM Journal on Control and Optimization, 49(1), 185-204. DOI: https://doi.org/10.1137/090773647
Frey, R., y Stremme, A. (1997). Market volatility and feedback effects from dynamic hedging. Mathematical Finance, 7(4), 351-374. DOI: https://doi.org/10.1111/1467-9965.00036
Kampovsky, A.-K., y Trautmann, S. (2000). Price Impact and Profit of Xetra- Traders: Does Profitability Increase with Trade Size? Department of Economics, University of Mainz.
Karoui, N. E., Jeanblanc-Picqu`e, M., y Shreve, S. E. (1998). Robustness of the black and scholes formula. Mathematical finance, 8(2), 93-126. DOI: https://doi.org/10.1111/1467-9965.00047
Merton, R. C., y Samuelson, P. A. (1992). Continuous-time finance. Blackwell Boston.
Monch, B. (2005). Modeling feedback effects with stochastic liquidity. Strategic Trading in Illiquid Markets, 9-46. DOI: https://doi.org/10.1007/b137407
Moreno Trujillo, J. F. (2018). Una nota sobre valoración de opciones financieras y ecuaciones diferenciales parciales no lineales (i). ODEON, (15). DOI: https://doi.org/10.18601/17941113.n15.03
Moreno Trujillo, J. F. (2020). Dinámica de precios y valoración de activos contingentes en mercados con riesgo de liquidez. ODEON, (19). DOI: https://doi.org/10.18601/17941113.n19.06
Platen, E., y Schweizer, M. (1998). On feedback effects from hedging derivatives. Mathematical Finance, 8(1), 67-84. DOI: https://doi.org/10.1111/1467-9965.00045
Ronnie Sircar, K., y Papanicolaou, G. (1998). General black-scholes models ac-counting for increased market volatility from hedging strategies. Applied Mathe-matical Finance, 5(1), 45-82. DOI: https://doi.org/10.1080/135048698334727
Schobel, R., y Zhu, J. (1999). Stochastic volatility with an ornstein–uhlenbeck process: An extension. Review of Finance, 3(1), 23-46. DOI: https://doi.org/10.1023/A:1009803506170
Stein, E. M., y Stein, J. C. (1991). Stock price distributions with stochastic volatility: An analytic approach. The Review of Financial Studies, 4(4), 727- 752. DOI: https://doi.org/10.1093/rfs/4.4.727
Trujillo, J. F. M. (2022). Finanzas cuantitativas. U. Externado de Colombia.
Wilmott, P., y Schonbucher, P. J. (2000). The feedback effect of hedging in illiquid markets. SIAM Journal on Applied Mathematics, 61(1), 232-272. DOI: https://doi.org/10.1137/S0036139996308534
Zhu, J. (2013). Modular pricing of options: An application of fourier analysis (Vol. 493). Springer Science & Business Media.