Valoración no lineal de derivados financieros en mercados con liquidez estocástica, descrita por un proceso de reversión a la media
Nonlinear valuation of financial derivatives in markets with stochastic liquidity described by a mean-reversion process
Contenido principal del artículo
Resumen
En este documento se deduce la ecuación diferencial parcial no lineal de valoración de un derivado financiero, esto en el contexto de un mercado en el cual los precios de los activos son influenciados por la liquidez y las estrategias dinámicas de negociación de un gran operador. Para esto se caracteriza la dinámica del precio del activo subyacente y se considera la condición de ausencia de arbitraje. La liquidez del mercado es estocástica y sigue un proceso con reversión a la media tipo Ornstein-Uhlenbeck.
Descargas
Detalles del artículo
Referencias (VER)
Aitken, M., y Comerton-Forde, C. (2003). How should liquidity be measured? Pacific-Basin Finance Journal, 11(1), 45-59.
Amihud, Y. (2002). Illiquidity and stock returns: Cross-section and time-series effects. Journal of Financial Markets, 5(1), 31-56.
Barndorff-Nielsen, O. E., y Shephard, N. (2001). Non-gaussian ornstein– uhlenbeck-based models and some of their uses in financial economics. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63(2), 167-241.
Bordag, L. A., y Frey, R. (2008). Pricing options in illiquid markets: Symmetry reductions and exact solutions. En Nonlinear models in mathematical finance: Research trends in option pricing (p. 103-130). Nova Science Publishers, Inc.
Brunetti, C., y Caldarera, A. (2004). Asset prices and asset correlations in illiquid markets. Available at SSRN 625184.
Cvitanic, J., y Ma, J. (1996). Hedging options for a large investor and forward-backward sde’s. The annals of applied probability, 6(2), 370-398.
Feng, S.-P., Hung, M.-W., y Wang, Y.-H. (2014). Option pricing with stochastic liquidity risk: Theory and evidence. Journal of Financial Markets, 18, 77-95.
Frey, R. (2000). Market illiquidity as a source of model risk in dynamic hedging. Model Risk, 125-136.
Frey, R., y Patie, P. (2002). Risk management for derivatives in illiquid markets: A simulation study. Springer.
Frey, R., y Polte, U. (2011). Nonlinear black–scholes equations in finance: As-sociated control problems and properties of solutions. SIAM Journal on Control and Optimization, 49(1), 185-204.
Frey, R., y Stremme, A. (1997). Market volatility and feedback effects from dynamic hedging. Mathematical Finance, 7(4), 351-374.
Kampovsky, A.-K., y Trautmann, S. (2000). Price Impact and Profit of Xetra- Traders: Does Profitability Increase with Trade Size? Department of Economics, University of Mainz.
Karoui, N. E., Jeanblanc-Picqu`e, M., y Shreve, S. E. (1998). Robustness of the black and scholes formula. Mathematical finance, 8(2), 93-126.
Merton, R. C., y Samuelson, P. A. (1992). Continuous-time finance. Blackwell Boston.
Monch, B. (2005). Modeling feedback effects with stochastic liquidity. Strategic Trading in Illiquid Markets, 9-46.
Moreno Trujillo, J. F. (2018). Una nota sobre valoración de opciones financieras y ecuaciones diferenciales parciales no lineales (i). ODEON, (15).
Moreno Trujillo, J. F. (2020). Dinámica de precios y valoración de activos contingentes en mercados con riesgo de liquidez. ODEON, (19).
Platen, E., y Schweizer, M. (1998). On feedback effects from hedging derivatives. Mathematical Finance, 8(1), 67-84.
Ronnie Sircar, K., y Papanicolaou, G. (1998). General black-scholes models ac-counting for increased market volatility from hedging strategies. Applied Mathe-matical Finance, 5(1), 45-82.
Schobel, R., y Zhu, J. (1999). Stochastic volatility with an ornstein–uhlenbeck process: An extension. Review of Finance, 3(1), 23-46.
Stein, E. M., y Stein, J. C. (1991). Stock price distributions with stochastic volatility: An analytic approach. The Review of Financial Studies, 4(4), 727- 752.
Trujillo, J. F. M. (2022). Finanzas cuantitativas. U. Externado de Colombia.
Wilmott, P., y Schonbucher, P. J. (2000). The feedback effect of hedging in illiquid markets. SIAM Journal on Applied Mathematics, 61(1), 232-272.
Zhu, J. (2013). Modular pricing of options: An application of fourier analysis (Vol. 493). Springer Science & Business Media.